
INSTITUT FÜR EXPERIMENTELLE TEILCHENPHYSIK (ETP) FELIX.METZNER@KIT.EDU

Belle II_
_

Luigi and B2Luigi
Belle II Software and Performance Workshop

Felix Metzner | 10th March 2020

KIT – University of the State of Baden-Württemberg and National Laboratory of the Helmholtz Association www.kit.edu

http://www.kit.edu

What is Luigi?
Luigi is a framework for the management of complex workflows
provided as Python package.

It allows to define elaborate data processing flows by

splitting the workflow into separate tasks

which can depend on the output of other tasks

and parameters.

Task A

ntuple.root

Task B

plot.pdf

requires

output input output

Luigi and B2Luigi - Felix Metzner 10th March 2020 2/32

https://luigi.readthedocs.io/en/latest/index.html

What is Luigi?

Task A

1st Task

ntuple.root

Missing Output

Task B

2nd Task

plot.pdf

Missing Output

requires

output inp
ut

output

Luigi is aware of

dependencies among tasks,

failed tasks (output does not exist),

already fulfilled tasks when restarting the program and

changed dependencies (to other tasks or parameters).

Luigi and B2Luigi - Felix Metzner 10th March 2020 3/32

What is Luigi?

Task A

Task Done

ntuple.root

Existing Output

Task B

Next Task

plot.pdf

requires

output inp
ut

output

Luigi is aware of

dependencies among tasks,

failed tasks (output does not exist),

already fulfilled tasks when restarting the program and

changed dependencies (to other tasks or parameters).

Luigi and B2Luigi - Felix Metzner 10th March 2020 3/32

What is Luigi?
Task A

ntuple.root

Task B
param=pdf

plot.pdf

Task B
param=png

plot.png

requires

output inp
ut

output

requires
input

output

Luigi is aware of

dependencies among tasks,

failed tasks (output does not exist),

already fulfilled tasks when restarting the program and

changed dependencies (to other tasks or parameters).

Luigi and B2Luigi - Felix Metzner 10th March 2020 3/32

A Luigi Task
import luigi

class MyTask(luigi.Task):

param = luigi.IntParameter(default=42)

def requires(self):

return SomeOtherTask(self.param)

def run(self):

with self.output().open("w") as f:

f.write("hello world")

def output(self):

return luigi.LocalTarget(f"/temp/foo/output {self.param}.txt")

if name == " main ":

luigi.run()

Parameters of this Task

What other Tasks it depends on

The Task’s business logic

The output of this Task

Luigi and B2Luigi - Felix Metzner 10th March 2020 4/32

https://luigi.readthedocs.io/en/latest/api/luigi.html#luigi.Task
https://luigi.readthedocs.io/en/latest/api/luigi.html#luigi.Parameter
https://luigi.readthedocs.io/en/latest/api/luigi.html#luigi.LocalTarget

Running Luigi

There are various ways to invoke a Luigi process:

In the main method:

luigi.run()

In the main method and starting a specific Task:

luigi.process(MyTask(param=47), workers=1)

From the command line:

luigi --module my tasks MyTask --local-scheduler --param=1337

Luigi and B2Luigi - Felix Metzner 10th March 2020 5/32

Luigi Parameters

Parameters are attributes of a Task
class which can be used to param-
eterize a Task.

The user must define how the param-
eters affect the business logic and the
output of the Task.

class TaskB(luigi.Task):

param = luigi.Parameter(default="pdf")

...

def run(self):

Some code creating a plot...

if self.param == "pdf":

fig.savefig("path/to/plot.pdf")

else:

fig.savefig("path/to/plot.png")

Depending on the data type the appropriate parameter class must be used:

luigi.Parameter for strings

luigi.IntParameter for integers

luigi.FloatParameter for floats

luigi.BoolParameter for booleans

luigi.DictParameter for dictionaries

and many more. . .

Luigi and B2Luigi - Felix Metzner 10th March 2020 6/32

https://luigi.readthedocs.io/en/latest/api/luigi.html#luigi.Task
https://luigi.readthedocs.io/en/latest/api/luigi.html#luigi.Parameter
https://luigi.readthedocs.io/en/latest/parameters.html#parameter-types
https://luigi.readthedocs.io/en/latest/api/luigi.parameter.html#luigi.parameter.Parameter
https://luigi.readthedocs.io/en/latest/api/luigi.parameter.html#luigi.parameter.IntParameter
https://luigi.readthedocs.io/en/latest/api/luigi.parameter.html#luigi.parameter.FloatParameter
https://luigi.readthedocs.io/en/latest/api/luigi.parameter.html#luigi.parameter.BoolParameter
https://luigi.readthedocs.io/en/latest/api/luigi.parameter.html#luigi.parameter.DictParameter

Dependencies

If a Task B requires another Task A, this must be defined in the requires method of Task B:

class TaskB(luigi.Task):

...

def requires(self):

yield TaskA()

This means Task B requires the output of Task A.
⇒ Task B depends on Task A.
⇒ Task B uses the output of Task A.
⇒ Task B is executed after Task A.

If the dependency is simple this can be
achieved with a decorator.
Simple means: Task A and Task B have
the exact same parameters.

from luigi.util import requires

@requires(TaskA)

class TaskB(luigi.Task):

...

No requires method necessary!

Luigi and B2Luigi - Felix Metzner 10th March 2020 7/32

https://luigi.readthedocs.io/en/latest/api/luigi.html#luigi.Task
https://luigi.readthedocs.io/en/latest/api/luigi.html#luigi.Task

Requiring Multiple Tasks and the WrapperTask

Requiring Multiple Tasks

class CalibrationEvaluationTask(luigi.Task):

...

def requires(self):

for in file in mdst files:

yield ReconstructionTask(mdst file=in file)

yield CalibrationTask(calibration tag="cal XYZ")

The WrapperTask Class

class CalibrationMasterTask(luigi.WrapperTask):

def requires(self):

calibration tags = ["cal ABC", "cal XYZ"]

for calibration tag in calibration tags:

yield CalibrationEvaluationTask(calibration tag)

yield CalibrationComparisonTask(calibration tags)

Luigi and B2Luigi - Felix Metzner 10th March 2020 8/32

https://luigi.readthedocs.io/en/latest/api/luigi.html#luigi.Task
https://luigi.readthedocs.io/en/latest/api/luigi.html#luigi.WrapperTask
https://luigi.readthedocs.io/en/latest/api/luigi.html#luigi.WrapperTask

Parameter Passing

When invoking the Luigi process

This option is only valid for the last Task of a chain. E.g.:
in the main method and starting a specific Task:

luigi.process(MyTask(param=47), workers=1)

or from the command line:

luigi --module my tasks MyTask --local-scheduler --param=1337

In the requires method

Via decorators and cloning

Luigi and B2Luigi - Felix Metzner 10th March 2020 9/32

Parameter Passing

When invoking the Luigi process

In the requires method

Usually necessary when
the required Task has more parameters then the requiring one, or

a Task is required multiple time with different parameters.

class CalibrationMasterTask(luigi.WrapperTask):

def requires(self):

calibration tags = ["cal ABC", "cal XYZ"]

for calibration tag in calibration tags:

yield CalibrationEvaluationTask(calibration tag)

Via decorators and cloning

Luigi and B2Luigi - Felix Metzner 10th March 2020 9/32

https://luigi.readthedocs.io/en/latest/api/luigi.html#luigi.WrapperTask

Parameter Passing

When invoking the Luigi process

In the requires method

Via decorators and cloning

If the Tasks have all parameters in common and ⇒ use the @requires decorator.

If only some parameters are shared ⇒ use the clone() method of the luigi.Task class:

class TaskB(luigi.Task):

def requires(self):

yield self.clone(TaskA, param A=42)

Bonus: Use the @inherits decorator to avoid the need to define the same parameter
multiple times for each Task!

Luigi and B2Luigi - Felix Metzner 10th March 2020 9/32

https://luigi.readthedocs.io/en/latest/api/luigi.util.html#luigi.util.requires
https://luigi.readthedocs.io/en/latest/api/luigi.task.html#luigi.task.Task.clone
https://luigi.readthedocs.io/en/latest/api/luigi.html#luigi.Task
https://luigi.readthedocs.io/en/latest/api/luigi.util.html#luigi.util.inherits

Parameter Passing

When invoking the Luigi process

In the requires method

Via decorators and cloning

See also this link to explore the many other well documented options. . .

Luigi and B2Luigi - Felix Metzner 10th March 2020 9/32

https://luigi.readthedocs.io/en/latest/api/luigi.util.html#using-inherits-and-requires-to-ease-parameter-pain

Luigi Targets
“A Target is a resource generated by a Task”

A Task can create one or multiple Targets as output.
If all Target defined in the output method of a Task exist, the Task is completed.
A output Target of Task A can be the input to a Task B which requires Task A.

The most basic implementation is the luigi.LocalTarget class.

Task A

TaskA.complete() = True

ntuple.root

Task B

TaskB.complete() = False

plot.pdf

requires

output inp
ut

output

Luigi and B2Luigi - Felix Metzner 10th March 2020 10/32

https://luigi.readthedocs.io/en/latest/api/luigi.html#luigi.LocalTarget

Luigi Targets

You normally will have to deal with Targets in the following methods of your Task:

Output Method — The providing side

Defines the output files a task will generate via

list of luigi.Target objects

generator of luigi.Target objects

dictionary mapping keys to luigi.Target

objects

. . .

def output(self):

return luigi.LocalTarget(f"/temp/output.txt")

def output(self):

yield luigi.LocalTarget(f"/temp/output1.txt")

yield luigi.LocalTarget(f"/temp/output2.txt")

def output(self):

key = f"output1")

file = luigi.LocalTarget(f"/temp/output1.txt")

return {key: file}

Input Method — The receiving side

Luigi and B2Luigi - Felix Metzner 10th March 2020 11/32

https://luigi.readthedocs.io/en/latest/workflows.html#target
https://luigi.readthedocs.io/en/latest/api/luigi.html#luigi.LocalTarget
https://luigi.readthedocs.io/en/latest/api/luigi.html#luigi.LocalTarget
https://luigi.readthedocs.io/en/latest/api/luigi.html#luigi.LocalTarget
https://luigi.readthedocs.io/en/latest/api/luigi.html#luigi.LocalTarget

Luigi Targets

You normally will have to deal with Targets in the following methods of your Task:

Output Method — The providing side

Input Method — The receiving side

A Task’s self.input() method provides access to the Targets output by all required Tasks.

The object returned by self.input() depends on: the requires method of the Task and

the output method of the required Tasks.

For a LocalTarget: Remember to use the path property to access the actual path of the target!

Example: A Task requires multiple other Tasks, each of which returns a dictionary of keys and
luigi.Target objects. To convert this to a dictionary containing the actual paths, use

path dict = {k: v.path for d in self.input() for k, v in d.items()}

Luigi and B2Luigi - Felix Metzner 10th March 2020 11/32

https://luigi.readthedocs.io/en/latest/workflows.html#target

Atomic Output

Writing larger files (e.g. ROOT-file) to disk takes time.
If this process is interrupted unexpectedly, the partly written file still exists.
⇒ Luigi might assume the Task was completed successfully, because the output exists!

To avoid this, make the creation of the final file atomic!

Some options to achieve this are:

write to a temporary file first, then rename or link this file to the expected output path;

write to your target file in the scope of Luigi.LocalTarget.open(mode="w"):
with self.output().open("w") as f:

f.write("hello world")

Luigi and B2Luigi - Felix Metzner 10th March 2020 12/32

Some General Advise

Use Luigi only to define the dependencies and the data processing flow!

Define your business logic in dedicated classes or functions independent of Luigi.
These are then used in the run method of a Task, but can also be used separately

This ensures

that you can use the code also elsewhere;

a better maintainability of the code;

that the code can be tested easier;

a cleaner code. . .

Luigi and B2Luigi - Felix Metzner 10th March 2020 13/32

Luigi Workers and the Luigi Scheduler

Once the workflow is defined, the Task chain can be executed. . .
. . . but what is the best way to do this?

Luigi Workers — Running with multiple local processes

Luigi Scheduler — Keeping track of your Tasks

Luigi and B2Luigi - Felix Metzner 10th March 2020 14/32

Luigi Workers and the Luigi Scheduler

Luigi Workers — Running with multiple local processes

Processing multiple independent Tasks in parallel is easy.
Just start Luigi with multiple workers, e.g.:

luigi.process(MyTask(param=47), workers=10)

Luigi Scheduler — Keeping track of your Tasks

Luigi and B2Luigi - Felix Metzner 10th March 2020 14/32

https://luigi.readthedocs.io/en/latest/execution_model.html#workers-and-task-execution

Luigi Workers and the Luigi Scheduler

Luigi Workers — Running with multiple local processes

Luigi Scheduler — Keeping track of your Tasks

When you run Luigi on multiple machines, e.g. via cron jobs, Luigi’s Scheduler is necessary
to manage the work distribution:

Start the Scheduler server (e.g. on KEKcc’s cw01) with
luigid --background --port <my port>

and your worker(s) with
python3 your script.py --scheduler-host cw01 --scheduler-port <my port>

Luigi and B2Luigi - Felix Metzner 10th March 2020 14/32

https://luigi.readthedocs.io/en/latest/central_scheduler.html

Luigi Workers and the Luigi Scheduler

Luigi Workers — Running with multiple local processes

Luigi Scheduler — Keeping track of your Tasks

Opening the Luigi Task Visualiser via
localhost:<my port> in a browser
will give you a nice overview!

Don’t forget to forward the port. . . !

Luigi and B2Luigi - Felix Metzner 10th March 2020 14/32

https://luigi.readthedocs.io/en/latest/central_scheduler.html

Luigi Workers and the Luigi Scheduler

Once the workflow is defined, the Task chain can be executed. . .
. . . but what is the best way to do this?

Luigi Workers — Running with multiple local processes

Luigi Scheduler — Keeping track of your Tasks

Luigi also provides support for many batch systems, but not the ones commonly used
in physics. . .

Luigi and B2Luigi - Felix Metzner 10th March 2020 14/32

Enter B2Luigi

B2Luigi is an extension of the Luigi project developed by Nils Braun1.

It provides additional features which can be categorized into three groups:

basf2 Features

B2Luigi introduces basf2 related Task classes such as the

Basf2PathTask which will run a basf2 path, or the

Basf2nTupleMergeTask, a wrapper task to merge ROOT-files produced by other Tasks.

Batch System Features

It adds back ends to the batch systems we usually use: LSF @ KEKcc or HTCondor @ NAF

Bread and Butter Features

B2Luigi can take care of basic bookkeeping for you, e.g. handling the output and input.

1nilslennartbraun@gmail.com
Luigi and B2Luigi - Felix Metzner 10th March 2020 15/32

https://b2luigi.readthedocs.io/en/stable/index.html
https://github.com/nils-braun/b2luigi/blob/master/b2luigi/basf2_helper/tasks.py#L37
https://github.com/nils-braun/b2luigi/blob/master/b2luigi/basf2_helper/tasks.py#L116
https://b2luigi.readthedocs.io/en/stable/advanced/basf2-examples.html#running-at-kekcc
https://b2luigi.readthedocs.io/en/stable/advanced/basf2-examples.html#running-at-the-naf
mailto:nilslennartbraun@gmail.com

Bread and Butter Features

First and foremost, B2Luigi provides a drop in replacement for the basic luigi.Task class.

This and other Super Hero Task classes can be used directly
import b2luigi

class MyTask(b2luigi.Task)

or replace the respective Luigi classes by importing B2Luigi via
import b2luigi as luigi

Luigi and B2Luigi - Felix Metzner 10th March 2020 16/32

https://b2luigi.readthedocs.io/en/stable/documentation/api.html#b2luigi.Task
https://luigi.readthedocs.io/en/latest/tasks.html#tasks
https://b2luigi.readthedocs.io/en/stable/documentation/api.html#super-hero-task-classes

Bread and Butter Features

The b2luigi.Task class will take care of the output- and input paths for you via the methods:

self.add to output(output file name="output.txt")

self.get input file names(key="previous output.txt")

self.get output file name(key="output.txt")

You only have to specify the file name itself.
The directory structure will be

created automatically at the location of the executed script and

dictated by the git-hash of the used basf2 version, as well as

the parameters of the Tasks.

Luigi and B2Luigi - Felix Metzner 10th March 2020 17/32

https://b2luigi.readthedocs.io/en/stable/documentation/api.html#b2luigi.Task

Bread and Butter Features
B2Luigi also adds handy command line options, such as
--show-output to get an overview of the output that will be produced:
python3 basf2 chain example.py --show-output

D n tuple.root

/path/to/script/location/git hash=<hash>/n events=1/D n tuple.root

/path/to/script/location/git hash=<hash>/n events=1/event type=y4s/D n tuple.root

/path/to/script/location/git hash=<hash>/n events=1/event type=continuum/D n tuple.root

B n tuple.root

/path/to/script/location/git hash=<hash>/n events=1/B n tuple.root

/path/to/script/location/git hash=<hash>/n events=1/event type=y4s/B n tuple.root

/path/to/script/location/git hash=<hash>/n events=1/event type=continuum/B n tuple.root

reconstructed output.root

/path/to/script/location/git hash=<hash>/n events=1/event type=y4s/reconstructed output.root

/path/to/script/location/git hash=<hash>/n events=1/event type=continuum/reconstructed output.root

simulation full output.root

/path/to/script/location/git hash=<hash>/n events=1/event type=y4s/simulation full output.root

/path/to/script/location/git hash=<hash>/n events=1/event type=continuum/simulation full output.root

You can test them easily yourself on the scripts provided in the B2Luigi examples!
Note that you have to use B2Luigi’s b2luigi.process method to enable these options!

Luigi and B2Luigi - Felix Metzner 10th March 2020 18/32

https://b2luigi.readthedocs.io/en/stable/documentation/run_modes.html#run-modes
https://github.com/nils-braun/b2luigi/tree/master/examples
https://b2luigi.readthedocs.io/en/stable/documentation/api.html#b2luigi.process

Bread and Butter Features
B2Luigi also adds handy command line options, such as
--dry-run (similar to luigi option) to get an overview of the Tasks that will be executed:
python3 basf2 chain example.py --dry-run

AnalysisTask

Would run AnalysisTask(git hash=<hash>, n events=1, event type=y4s)

Would run AnalysisTask(git hash=<hash>, n events=1, event type=continuum)

MasterTask

Would run MasterTask(git hash=<hash>, n events=1)

ReconstructionTask

Would run ReconstructionTask(git hash=<hash>, n events=1, event type=y4s)

Would run ReconstructionTask(git hash=<hash>, n events=1, event type=continuum)

SimulationTask

Would run SimulationTask(git hash=<hash>, n events=1, event type=y4s)

Would run SimulationTask(git hash=<hash>, n events=1, event type=continuum)

You can test them easily yourself on the scripts provided in the B2Luigi examples!
Note that you have to use B2Luigi’s b2luigi.process method to enable these options!

Luigi and B2Luigi - Felix Metzner 10th March 2020 18/32

https://b2luigi.readthedocs.io/en/stable/documentation/run_modes.html#run-modes
https://github.com/nils-braun/b2luigi/tree/master/examples
https://b2luigi.readthedocs.io/en/stable/documentation/api.html#b2luigi.process

Batch Systems

LSF (e.g. at KEKcc)

This is B2Luigi’s default setting for running on a batch system!
All you need to do is to start the process with the batch run mode

either via the command line option --batch:
python3 my b2luigi script.py --batch

or by specifying the run mode batch in the process call in the main function:
if name == " main ":

b2luigi.process(MyMasterTask, batch=True)

The LSF queue to be used can be specified via the Task parameter queue (the default is "s"):
class MyLongTask(b2luigi.Task):

queue = "l" # Task will be submitted to long queue in batch mode!

HTCondor (e.g. at NAF)

Note that you have to use B2Luigi’s b2luigi.process method to enable these options!
Luigi and B2Luigi - Felix Metzner 10th March 2020 19/32

https://b2luigi.readthedocs.io/en/stable/usage/batch.html#batch-processing
https://b2luigi.readthedocs.io/en/stable/usage/batch.html#lsf
https://b2luigi.readthedocs.io/en/stable/documentation/run_modes.html
https://b2luigi.readthedocs.io/en/stable/usage/batch.html#htcondor
https://b2luigi.readthedocs.io/en/stable/documentation/api.html#b2luigi.process

Batch Systems

LSF (e.g. at KEKcc)

HTCondor (e.g. at NAF)

Using HTCondor requires some settings to be defined (see also B2Luigi documentation):

The settings required for HTCondor can be set

directly in the script using
b2luigi.set setting (see example
on the right), or

in the B2Luigi setting.json file in the
folder of the script.

Task specific settings can be defined directly
in the Task class, as described here

if name == " main ":

Choose htcondor as our batch system

b2luigi.set setting("batch system", "htcondor")

Setup the correct environment on the workers

b2luigi.set setting("env script", "setup basf2.sh")

Specifying executable for worker node explicitly

b2luigi.set setting("executable", ["python3"])

Where to store the results

b2luigi.set setting("result path", "results")

b2luigi.process(MasterTask(), batch=True, workers=10)

Note that you have to use B2Luigi’s b2luigi.process method to enable these options!
Luigi and B2Luigi - Felix Metzner 10th March 2020 19/32

https://b2luigi.readthedocs.io/en/stable/usage/batch.html#batch-processing
https://b2luigi.readthedocs.io/en/stable/usage/batch.html#lsf
https://b2luigi.readthedocs.io/en/stable/usage/batch.html#htcondor
https://b2luigi.readthedocs.io/en/stable/advanced/basf2-examples.html#running-at-the-naf
https://b2luigi.readthedocs.io/en/stable/documentation/api.html#b2luigi.set_setting
https://b2luigi.readthedocs.io/en/stable/documentation/api.html#settings
https://b2luigi.readthedocs.io/en/stable/usage/batch.html#htcondor
https://b2luigi.readthedocs.io/en/stable/documentation/api.html#b2luigi.process

A basf2 Example

To explaine some of the basf2 specific Task classes, such as

the Basf2PathTask and

the Basf2nTupleMergeTask

we will go through a basf2 specific B2Luigi example describing a B2Luigi workflow for

Monte Carlo simulation,

reconstruction,

a simple analysis

and the merging of the resulting n-tuples.

You can find the source file of the example here.

Luigi and B2Luigi - Felix Metzner 10th March 2020 20/32

https://github.com/nils-braun/b2luigi/blob/master/b2luigi/basf2_helper/tasks.py#L37
https://github.com/nils-braun/b2luigi/blob/master/b2luigi/basf2_helper/tasks.py#L116
https://b2luigi.readthedocs.io/en/stable/advanced/basf2-examples.html#standard-simulation-reconstruction-and-some-ntuple-generation
https://github.com/nils-braun/b2luigi/blob/master/examples/basf2/basf2_chain_example.py

A basf2 Example

Given the described steps we have the follow-
ing basic structure of Tasks:

Monte Carlo simulation,

reconstruction,

a simple analysis

and the merging of the resulting n-tuples,

class SimulationTask(b2luigi.Basf2PathTask): # First task, requires nothing

...

@luigi.requires(SimulationTask) # Requires the output of SimulationTask

class ReconstructionTask(b2luigi.Basf2PathTask):

...

@luigi.requires(ReconstructionTask) # Requires the output of ReconstructionTask

class AnalysisTask(b2luigi.Basf2PathTask):

...

Entry Task; requires all AnalysisTasks and merges their output

class MasterTask(b2luigi.Basf2nTupleMergeTask):

...

Luigi and B2Luigi - Felix Metzner 10th March 2020 21/32

A basf2 Example
import b2luigi as luigi
from b2luigi.basf2 helper import Basf2PathTask, Basf2nTupleMergeTask

class SimulationTask(Basf2PathTask): # First task, requires nothing
n events = luigi.IntParameter()
event type = luigi.EnumParameter(enum=SimulationType)

def create path(self):
path = basf2.create path()
modularAnalysis.setupEventInfo(self.n events, path)

if self.event type == SimulationType.y4s:

df = Belle2.FileSystem.findFile("analysis/examples/tutorials/B2A101-Y4SEventGeneration.dec")
elif self.event type == SimulationType.continuum:

df = Belle2.FileSystem.findFile("analysis/examples/simulations/B2A102-ccbarEventGeneration.dec")
else:

raise ValueError(f"Event type {self.event type} is not valid.")

generators.add evtgen generator(path, "signal", signaldecfile=df)
modularAnalysis.loadGearbox(path)
simulation.addsimulation(path)
path.add module("RootOutput", outputFileName=self.get output file name("simulation output.root"))
return path

def output(self):
yield self.add to output("simulation output.root")

We use B2Luigi’s
Basf2PathTask class

Luigi and B2Luigi - Felix Metzner 10th March 2020 22/32

A basf2 Example
import b2luigi as luigi
from b2luigi.basf2 helper import Basf2PathTask, Basf2nTupleMergeTask

class SimulationTask(Basf2PathTask): # First task, requires nothing
n events = luigi.IntParameter()
event type = luigi.EnumParameter(enum=SimulationType)

def create path(self):
path = basf2.create path()
modularAnalysis.setupEventInfo(self.n events, path)

if self.event type == SimulationType.y4s:

df = Belle2.FileSystem.findFile("analysis/examples/tutorials/B2A101-Y4SEventGeneration.dec")
elif self.event type == SimulationType.continuum:

df = Belle2.FileSystem.findFile("analysis/examples/simulations/B2A102-ccbarEventGeneration.dec")
else:

raise ValueError(f"Event type {self.event type} is not valid.")

generators.add evtgen generator(path, "signal", signaldecfile=df)
modularAnalysis.loadGearbox(path)
simulation.addsimulation(path)
path.add module("RootOutput", outputFileName=self.get output file name("simulation output.root"))
return path

def output(self):
yield self.add to output("simulation output.root")

class SimulationType(Enum):

y4s = "Y(4S)"

continuum = "Continuum"

Luigi and B2Luigi - Felix Metzner 10th March 2020 22/32

A basf2 Example
import b2luigi as luigi
from b2luigi.basf2 helper import Basf2PathTask, Basf2nTupleMergeTask

class SimulationTask(Basf2PathTask): # First task, requires nothing
n events = luigi.IntParameter()
event type = luigi.EnumParameter(enum=SimulationType)

def create path(self):
path = basf2.create path()
modularAnalysis.setupEventInfo(self.n events, path)

if self.event type == SimulationType.y4s:

df = Belle2.FileSystem.findFile("analysis/examples/tutorials/B2A101-Y4SEventGeneration.dec")
elif self.event type == SimulationType.continuum:

df = Belle2.FileSystem.findFile("analysis/examples/simulations/B2A102-ccbarEventGeneration.dec")
else:

raise ValueError(f"Event type {self.event type} is not valid.")

generators.add evtgen generator(path, "signal", signaldecfile=df)
modularAnalysis.loadGearbox(path)
simulation.addsimulation(path)
path.add module("RootOutput", outputFileName=self.get output file name("simulation output.root"))
return path

def output(self):
yield self.add to output("simulation output.root")

The create path() method
replaces Luigi’s run()

It returns the basf2 path that
will be processed.

Luigi and B2Luigi - Felix Metzner 10th March 2020 22/32

A basf2 Example

@luigi.requires(SimulationTask)
class ReconstructionTask(Basf2PathTask):
def create path(self):
path = basf2.create path()

path.add module("RootInput", inputFileNames=self.get input file names("simulation output.root"))
modularAnalysis.loadGearbox(path)
reconstruction.add reconstruction(path)

modularAnalysis.outputMdst(self.get output file name("reco output.root"), path=path)

return path

def output(self):
yield self.add to output("reco output.root")

Luigi and B2Luigi - Felix Metzner 10th March 2020 23/32

A basf2 Example
@luigi.requires(ReconstructionTask)
class AnalysisTask(Basf2PathTask):
def create path(self):
path = basf2.create path()
modularAnalysis.inputMdstList("default", self.get input file names("reco output.root"), path=path)
modularAnalysis.fillParticleLists([("K+", "kaonID > 0.1"), ("pi+", "pionID > 0.1")], path=path)
modularAnalysis.reconstructDecay("D0 -> K- pi+", "1.7 < M < 1.9", path=path)
modularAnalysis.fitVertex("D0", 0.1, path=path)
modularAnalysis.matchMCTruth("D0", path=path)
modularAnalysis.reconstructDecay("B- -> D0 pi-", "5.2 < Mbc < 5.3", path=path)
modularAnalysis.fitVertex("B+", 0.1, path=path)
modularAnalysis.matchMCTruth("B-", path=path)
D file = self.get output file name("D ntuple.root")
D vars = ["M", "p", "E", "useCMSFrame(p)", "useCMSFrame(E)", "daughter(0, kaonID)", ...]
modularAnalysis.variablesToNtuple("D0", D vars, filename=D file, path=path)
B file = self.get output file name("B ntuple.root")
B vars = ["Mbc", "deltaE", "isSignal", "mcErrors", "M"]
modularAnalysis.variablesToNtuple("B-", B vars, filename=B file, path=path)

return path

def output(self):
yield self.add to output("D ntuple.root")
yield self.add to output("B ntuple.root")

Luigi and B2Luigi - Felix Metzner 10th March 2020 24/32

A basf2 Example

class MasterTask(Basf2nTupleMergeTask):
n events = luigi.IntParameter()

def requires(self):
for event type in SimulationType:

yield self.clone(AnalysisTask, event type=event type)

if name == " main ":

luigi.process(MasterTask(n events=1), workers=4)

And now just execute the task chain by running the script with python, e.g. with:
python3 basf2 chain example.py

Luigi and B2Luigi - Felix Metzner 10th March 2020 25/32

Successful Execution

===== Luigi Execution Summary =====

Scheduled 20 tasks of which:

* 17 complete ones were encountered:

- 1 AnalysisEvaluationTask(...)

- 1 EfficiencyEvaluationTask(...)

- 14 ResolutionCorrectionTask(...)

- 1 ResolutionCorrectionValidationTask(...)

* 3 ran successfully:

- 1 OfflineAnalysisMaster(...)

- 1 SidebandEvaluationTask(...)

- 1 ValidationWrapperTask(...)

This progress looks :) because there were no failed tasks or missing dependencies

===== Luigi Execution Summary =====

Luigi and B2Luigi - Felix Metzner 10th March 2020 26/32

Unsuccessful Execution
===== Luigi Execution Summary =====

Scheduled 50 tasks of which:

* 16 complete ones were encountered:

- 1 AnalysisEvaluationTask(...)

- 1 EfficiencyEvaluationTask(...)

- 14 SampleCombinerTask(...)

* 3 ran successfully:

- 1 WeightAnalysisTask(...)

- 2 WeightFinalizationTask(...)

* 12 failed:

- 12 WeightFinalizationTask(...)

* 14 were left pending, among these:

* 14 had failed dependencies:

- 14 ResolutionCorrectionTask(...)

This progress looks :(because there were failed tasks

===== Luigi Execution Summary =====

If Tasks fail for some reason

the error message will be in
the log output when run
locally, or

B2Luigi will point you to the
log file of the respective job,
when running in batch mode.

Luigi and B2Luigi - Felix Metzner 10th March 2020 27/32

Further Development

Submitting Basf2PathTask to the grid is not supported, yet!

. . . but Michael Eliachevitch2 is working on a soft integration of gbasf2 into B2Luigi:

Soft, because the Task itself will not run on the grid;

It will rather submit to the grid via gbasf2 and wait for the jobs to finish.

For this it will submit a file containing the pickled basf2 path.

This way you can make use of extensive external packages to create the basf2 path
without shipping the package with the grid job.

The details are not clear at the moment, but he is working on it. . .

2meliache@uni-bonn.de
Luigi and B2Luigi - Felix Metzner 10th March 2020 28/32

mailto:meliache@uni-bonn.de

Availability of Luigi and B2Luigi

Luigi and B2Luigi are available in the current basf2 externals v01-08-00:

luigi 2.7.7

b2luigi 0.3.2

These versions already support most of the features shown in this talk.

HTCondor support is available since b2luigi version 0.4.0

How to install newer B2Luigi versions:

pip3 install [--user] --ignore-installed b2luigi==0.4.4

See also the information given on the documentation for B2Luigi developers!

Luigi and B2Luigi - Felix Metzner 10th March 2020 29/32

https://b2luigi.readthedocs.io/en/latest/usage/installation.html
https://b2luigi.readthedocs.io/en/latest/advanced/development.html#local-development

B2Luigi Experts

Main Developer

Nils Braun nilslennartbraun@gmail.com

Power Users

Felix Metzner felix.metzner@kit.edu

Michael Eliachevitch meliache@uni-bonn.de

Maximilian Welsch mwelsch@uni-bonn.de

Patrick Ecker patrick.ecker@student.kit.edu

Feel free to contact any of us, if you encounter any issues or have general questions!

Luigi and B2Luigi - Felix Metzner 10th March 2020 30/32

mailto:nilslennartbraun@gmail.com
mailto:felix.metzner@kit.edu
mailto:meliache@uni-bonn.de
mailto:mwelsch@uni-bonn.de
mailto:patrick.ecker@student.kit.edu

General Advise

Keep the structure of

the output and input methods

and the task logic

the same. . .

Luigi and B2Luigi - Felix Metzner 10th March 2020 31/32

Summary

Luigi provides a well tested and documented framework to manage data processing
workflows.
It is used by many organizations and companies to handle their data processing.

B2Luigi provides additional features to take care of some housekeeping for you and adds
functionality to make use of our batch systems as well as to make the implementation of
basf2 Tasks as easy as possible for you.

Together, these tools can make automatization easy and thus can ensure reproducibility
of your work!

Thank You for Your attention!

Luigi and B2Luigi - Felix Metzner 10th March 2020 32/32

https://luigi.readthedocs.io/en/latest/index.html
https://luigi.readthedocs.io/en/latest/index.html#who-uses-luigi
https://b2luigi.readthedocs.io/en/stable/index.html

