Karlsruhe School of Elementary Particle and Astroparticle Physics: Science and Technology (KSETA)

Genrich Zeller

Information

Institute: IAP-TLK (CN)
Room: 451/318
Phone: +49 721 608 22232
Email: Genrich.Zeller∂kit.edu

PhD Thesis

Raman spectroscopy for KATRIN: monitoring of continuous tritium gas flows and tritium-graphene interactions
Supervisor: Prof. Dr. K. Valerius (IAP, KIT)
Second Supervisor: Prof. Dr. H. Telle (Universidad Autónoma de Madrid)
Defence date: February 2024

Publications

publications_reviewed
[1] Deseada Diaz Barrero, Genrich Zeller, Magnus Schlösser, Beate Bornschein, and Helmut H Telle. Versatile confocal raman imaging microscope built from off-the-shelf opto-mechanical components. Sensors, 22(24):10013, 2022. [ bib ]
[2] M. Aker et al. New Constraint on the Local Relic Neutrino Background Overdensity with the First KATRIN Data Runs. Phys. Rev. Lett., 129(1):011806, 2022. [ bib | DOI | arXiv ]
[3] M. Aker et al. Improved eV-scale sterile-neutrino constraints from the second KATRIN measurement campaign. Phys. Rev. D, 105(7):072004, 2022. [ bib | DOI | arXiv ]
[4] M. Aker et al. Direct neutrino-mass measurement with sub-electronvolt sensitivity. Nature Phys., 18(2):160--166, 2022. [ bib | DOI | arXiv ]
[5] M. Aker et al. Precision measurement of the electron energy-loss function in tritium and deuterium gas for the KATRIN experiment. Eur. Phys. J. C, 81(7):579, 2021. [ bib | DOI | arXiv ]
[6] M. Aker et al. Analysis methods for the first KATRIN neutrino-mass measurement. Phys. Rev. D, 104(1):012005, 2021. [ bib | DOI | arXiv ]
[7] M. Aker et al. Bound on 3+1 Active-Sterile Neutrino Mixing from the First Four-Week Science Run of KATRIN. Phys. Rev. Lett., 126(9):091803, 2021. [ bib | DOI | arXiv ]
[8] M. Aker et al. Suppression of Penning discharges between the KATRIN spectrometers. Eur. Phys. J. C, 80(9):821, 2020. [ bib | DOI | arXiv ]
[9] Max Aker et al. First operation of the KATRIN experiment with tritium. Eur. Phys. J. C, 80(3):264, 2020. [ bib | DOI | arXiv ]
[10] M. Aker et al. Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN. Phys. Rev. Lett., 123(22):221802, 2019. [ bib | DOI | arXiv ]
[11] K. Altenmüller et al. High-resolution spectroscopy of gaseous 83mKr conversion electrons with the KATRIN experiment. J. Phys. G, 47(6):065002, 2020. [ bib | DOI | arXiv ]
[12] K. Altenmüller et al. Gamma-induced background in the KATRIN main spectrometer. Eur. Phys. J. C, 79(9):807, 2019. [ bib | DOI | arXiv ]
[13] K. Altenmüller et al. Muon-induced background in the KATRIN main spectrometer. Astropart. Phys., 108:40--49, 2019. [ bib | DOI | arXiv ]
[14] Max Aker, Konrad Altenmüller, Armen Beglarian, Jan Behrens, Anatoly Berlev, Uwe Besserer, Benedikt Bieringer, Klaus Blaum, Fabian Block, Beate Bornschein, et al. Quantitative long-term monitoring of the circulating gases in the katrin experiment using raman spectroscopy. Sensors, 20(17):4827, 2020. [ bib ]
[15] Simon Niemes, Helmut H Telle, Beate Bornschein, Lucian Fasselt, Robin Größle, Florian Priester, Magnus Schlösser, Michael Sturm, Stefan Welte, and Genrich Zeller. Accurate reference gas mixtures containing tritiated molecules: Their production and raman-based analysis. Sensors, 21(18):6170, 2021. [ bib ]

This file was generated by bibtex2html 1.98.

Other Publications

  • Calibration strategy and status of tritium purity monitoring for KATRIN
  • Simon Niemes and Genrich Zeller
    https://doi.org/10.5281/zenodo.1302940

    Conferences and Talks