Improved model for transmission probabilities of edge-welded bellows based on TPMC simulations

Marcel Krause
Institute for Theoretical Physics (ITP), Karlsruhe Institute of Technology (KIT)

• Joachim Wolf
Institute for Experimental Particle Physics (ETP), Karlsruhe Institute of Technology (KIT)

April 1, 2019

- Principle of vacuum simulations
- Simulation of edge-welded bellows
- Analysis of simulation results
- Improved model for edge-welded bellows
Principle of vacuum simulations

- **Test Particle Monte Carlo (TPMC) simulation** for free molecular flow
 - Molflow+

- **Surfaces** approximated by **mesh**
 - Individual properties of each surface element:
 - Sticking coefficient α_i
 - Desorption probability and angular distribution $\cos^n(\Theta)$
 - Diffuse (Lambertian) reflection

- **Particle tracking** counts for each surface element
 - Number of **desorptions** N_D
 - Number of **hits** N_H
 - Number of **adsorptions** N_A
Principle of vacuum simulations: conductance

- Conductance of a tube: \(Q = C \cdot \Delta p \)
- Tube connects two large recipients

Simulation of the conductance with TPMC code

- **Entrance:** desorbing and adsorbing surface (\(\alpha_{\text{in}} = 100\% \)) \(N_{D,\text{in}}, N_{A,\text{in}} \)
- **Exit:** adsorbing surface (\(\alpha_{\text{out}} = 100\% \)) at exit \(N_{A,\text{out}} \)
- Conductance = inflow \(\times \) transmission probability \(W = \frac{N_{A,\text{out}}}{N_{D,\text{in}}} \)

\[
C = \frac{1}{4} \cdot \bar{c} \cdot A \cdot \frac{N_{A,\text{out}}}{N_{D,\text{in}}}
\]

\[
Q = C \cdot \Delta p = \frac{1}{4} \cdot \bar{c} \cdot A \cdot \frac{N_{A,\text{out}}}{N_{D,\text{in}}} \cdot \Delta p
\]
Vacuum simulation of edge-welded bellows

- Implementation of edge-welded bellows:
 - 2 straight tubes at each end
 - n bellow elements approximated by mesh

- Entrance and exit tube surfaces: 30 surface elements per tube

- n membrane elements: $60 \times n$ surface elements

 - Large increase in number of surface elements
 - Increase in simulation time by several orders of magnitude
 - Is it possible to replace the bellow with a straight tube?
Bellow parameters

- **Model geometry parameters:**
 - tube diameter: \(d = 100 \text{ mm} \)
 - tube length / tube diameter \(l/d \)
 - bellow length / tube length \(l_B/l \)
 - bellow height / tube diameter \(h/d \)
 - width of single bellow element \(w \)

- **Monte Carlo data:**
 - number of desorptions \(N_D \)
 - number of adsorptions \(N_A(E) \)

- **Analysis of simulation data:**
 - transmission probability
 \[
 W(l/d, l_B/l) = \frac{N_A(E)}{N_D}
 \]
Variation of opening angle $\alpha_B \left(\frac{h}{d} \right)$

- Variation of $\frac{h}{d}$ changes the transmission probability W considerably
- Common bellow geometry: W changes only by a few percent
 \Rightarrow $\frac{h}{d}$ variance is acceptable for common bellow geometries
Variation of opening angle $\alpha_B (h/d)$

- **small angles (a):** bellow converging towards **straight tube**
- **large angles (c):** multiple reflections in one bellow element; **forward reflection reduced**
- **Minimum for angles around 55°:** bellow surfaces have perfect angle for backward reflection
Variation of bellow length l_B/l and tube length l/d

- **Model geometry parameters:**
 - tube diameter: $d = 100$ mm
 - tube length / tube diameter l/d
 - bellow length / tube length l_B/l

- **Fixed parameters:**
 - bellow height / tube diameter $h/d = 0.25$
 - width of single bellow element $w/d = 0.025$

- **Analysis of simulation data:**
 - transmission probability $W(l/d, l_B/l) \equiv \frac{N_{A(E)}}{N_{D}}$
Variation of bellow length l_B/l and tube length l/d

- **Transmission probabilities** for **straight circular tubes** from literature (no bellows, empirical):

 $$W(l/d, 0) = \frac{14 + 4\frac{l}{d}}{14 + 18\frac{l}{d} + 3\left(\frac{l}{d}\right)^2}$$

 (K. Jousten et al, Handbook of Vacuum Technology, p. 136)

- **Plot** of TPMC transmission probabilities W versus l/d

- **Ansatz** for W of the tube:

 $$W(l/d, 0) = \frac{1 + c_1\frac{l}{d}}{1 + c_2\frac{l}{d} + c_3\left(\frac{l}{d}\right)^2}$$

- The c_i parameters were fitted with the TPMC results
Variation of bellow length l_B/l and tube length l/d

- **Transmission probabilities of pure bellows**
 (no straight tube elements), i.e. $l_B/l = 1$

- **Plot** of the TPMC transmission probabilities W versus l/d

- l/d dependence follows the **same functional form** as before, but with **different** fit parameters

- **Ansatz** for W of a pure bellow:

 $$W(l/d, 1) = \frac{1 + c_4 \frac{l}{d}}{1 + c_5 \frac{l}{d} + c_6 \left(\frac{l}{d}\right)^2}$$

- The c_i parameters were fitted with the TPMC results

Fit function

<table>
<thead>
<tr>
<th>Fit function</th>
<th>$(1 + c_4(l/d))/(1 + c_5(l/d) + c_6(l/d)^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_4</td>
<td>0.210 ± 0.024</td>
</tr>
<tr>
<td>c_5</td>
<td>1.461 ± 0.028</td>
</tr>
<tr>
<td>c_6</td>
<td>0.204 ± 0.025</td>
</tr>
</tbody>
</table>

$w/d = 0.025$

$h/d = 0.250$

$l_B/l = 1.0$
Variation of bellow length l_B/l and tube length l/d

- **What is W in general?**
 - Bellow length: $0 \leq l_B/l \leq l$
 - 2 tubes, central bellow

- Simulation shows **linear dependence** of W on l_B/l

- **New ansatz** for W:

$$W \left(\frac{l}{d}, \frac{l_B}{l} \right) =$$

$$W_T \left(\frac{l}{d} \right) + \frac{l_B}{l} \cdot \left[W_B \left(\frac{l}{d} \right) - W_T \left(\frac{l}{d} \right) \right]$$
Variation of bellow length l_B/l and tube length l/d

New ansatz for the transmission probability of bellows:

$$W (l/d, l_B/l) = \left(1 - \frac{l_B}{l}\right) \frac{1 + c_1 \frac{l}{d}}{1 + c_2 \frac{l}{d} + c_3 \left(\frac{l}{d}\right)^2} + \frac{l_B}{l} \frac{1 + c_4 \frac{l}{d}}{1 + c_5 \frac{l}{d} + c_6 \left(\frac{l}{d}\right)^2}$$

Fit results for parameters c_i:

<table>
<thead>
<tr>
<th>parameter</th>
<th>fit value</th>
<th>standard error σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>0.2915</td>
<td>0.0020</td>
</tr>
<tr>
<td>c2</td>
<td>1.3018</td>
<td>0.0026</td>
</tr>
<tr>
<td>c3</td>
<td>0.2225</td>
<td>0.0015</td>
</tr>
<tr>
<td>c4</td>
<td>0.2707</td>
<td>0.0069</td>
</tr>
<tr>
<td>c5</td>
<td>1.5267</td>
<td>0.0077</td>
</tr>
<tr>
<td>c6</td>
<td>0.2777</td>
<td>0.0077</td>
</tr>
</tbody>
</table>

(M. Krause, J. Wolf, Vacuum 160 (2019), 402)
Comparison of straight tube results with literature

Case without bellows, i.e. **straight tubes**:

\[W(l/d, 0) = \frac{1 + c_1 \frac{l}{d}}{1 + c_2 \frac{l}{d} + c_3 \left(\frac{l}{d} \right)^2} \]

For **very long tubes**, this becomes:

\[W(l/d, 0) \bigg|_{(l/d) \to \infty} \rightarrow (1.322 \pm 0.013) \cdot \left(\frac{l}{d} \right)^{-1} \]

This is **in accordance** with literature for a **straight circular tube**:

\[W(l/d) \bigg|_{(l/d) \to \infty} \rightarrow \frac{4}{3} \cdot \left(\frac{l}{d} \right)^{-1} \]

(K. Jousten et al, Handbook of Vacuum Technology, p. 136)

For **very long bellow** \((l_B/l = 1)\), the model converges to:

\[W(l/d) \rightarrow \frac{c_4}{c_6} \cdot \frac{d}{l} = (0.97 \pm 0.04) \cdot \frac{d}{l} \approx \frac{d}{l} \]
Comparison of straight tube results with literature

- Case without bellows, i.e. **straight tubes**:

\[W \left(\frac{l}{d}, 0 \right) = \frac{1 + c_1 \frac{l}{d}}{1 + c_2 \frac{l}{d} + c_3 \left(\frac{l}{d} \right)^2} \]

- For **very short tubes**, this becomes:

\[W \left(\frac{l}{d}, 0 \right) \bigg|_{(l/d) \to 0} \rightarrow 1 - (1.0103 \pm 0.0025) \frac{l}{d} \]

- This is **in accordance** with literature for a **straight circular tube**:

\[W \left(\frac{l}{d} \right) \bigg|_{(l/d) \to 0} \rightarrow 1 - \frac{l}{d} \]

(K. Jousten et al, Handbook of Vacuum Technology)
Comparison of straight tube results with literature

- **TPMC simulation:**

\[
W(l/d, 0) = \frac{1 + c_1 \frac{l}{d}}{1 + c_2 \frac{l}{d} + c_3 \left(\frac{l}{d}\right)^2}
\]

- **Literature:**

\[
W(l/d, 0) = \frac{14 + 4 \frac{l}{d}}{14 + 18 \frac{l}{d} + 3 \left(\frac{l}{d}\right)^2}
\]

(K. Jousten et al, Handbook of Vacuum Technology)

- **On average only 0.13% deviation**

Fit function

\[W_{\text{sim}} = s \cdot W_{\text{emp}} + y\]

<table>
<thead>
<tr>
<th>Intersection point y</th>
<th>8.28E-5 ± 5.41E-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope s</td>
<td>1.0013 ± 0.0004</td>
</tr>
</tbody>
</table>
Replacement of bellows in TPMC simulations

- **Objective:** replace a bellow with a straight tube
 - same transmission probability
 - same diameter
 - modified length l'

Transmission probability of the bellow:

$$W \left(l/d, l_B/l\right) = \left(1 - \frac{l_B}{l}\right) \frac{1 + c_1 \frac{l}{d}}{1 + c_2 \frac{l}{d} + c_3 \left(\frac{l}{d}\right)^2} + \frac{l_B}{l} \frac{1 + c_4 \frac{l}{d}}{1 + c_5 \frac{l}{d} + c_6 \left(\frac{l}{d}\right)^2}$$

Straight tube with modified length l' and same transmission probability:

$$W \left(l'/d, 0\right) = 1 \frac{1 + c_1 \frac{l'}{d}}{1 + c_2 \frac{l'}{d} + c_3 \left(\frac{l'}{d}\right)^2}$$
Replacement of bellows in TPMC simulations

- **Ansatz:** \[W \equiv W (l/d, l_B/l) = W (l'/d, 0) \]

\[
\frac{l'}{d} = \frac{c_1 - c_2 W + \sqrt{(c_1 - c_2 W)^2 + 4c_3 W (1-W)}}{2c_3 W}
\]

- **Proposed procedure** for replacing bellows in TPMC simulations:
 - calculate \(W \) with the model introduced here
 - calculate the effective length \(l'/d \)
 - replace the bellow in the simulation with a straight tube with length \(l'/d \)

- this procedure has been tested for a few bellows with different design parameters
 - error of a few percent
 - significant reduction in simulation time
Replacement of bellows in TPMC simulations

- Reduction in simulation time by several orders of magnitude

![Graph showing simulation time for 10^6 absorptions in s vs. \(\frac{l_B}{l} \)]

- \(l/d = 4 \)
- \(w/d = 0.025 \)
- \(h/d = 0.250 \)
Conclusion

- A wide range of bellow design parameters have been simulated.

- Variations in bellow widths and heights have no significant effect (for standard bellow parameters).

- A numerical model for transmission probabilities has been found, based on TPMC simulations.

- A simple approximation for the transmission probability of very long bellows is $W \approx d/l$.

- A procedure for replacing bellows by straight tubes in molecular flow simulations has been proposed.

Details and results:

M. Krause, J. Wolf: Improved model for transmission probabilities of edge-welded bellows based on TPMC simulations
Variation of opening angle $\alpha_B (h/d)$

Variation of h/d **changes the transmission probability W considerably**

Common bellow geometry: W **changes only by a few percent**

\Rightarrow **h/d variance is acceptable** for common bellow geometries
Variation of opening angle $\alpha_B (w/d)$

- Variation of w/d changes the transmission probability W considerably.
- Common bellow geometry: W changes only by a few percent.
 - w/d variance is acceptable for common bellow geometries.