

Improved model for transmission probabilities of edgewelded bellows based on TPMC simulations

[M. Krause, J. Wolf, Vacuum 160 (2019), 402, doi:10.1016/j.vacuum.2018.11.049, arxiv:1810.00768]

Marcel Krause

Institute for Theoretical Physics (ITP), Karlsruhe Institute of Technology (KIT)

• Joachim Wolf

Institute for Experimental Particle Physics (ETP), Karlsruhe Institute of Technology (KIT)

Institute for Theoretical Physics, Institute of Experimental Particle Physics

- Principle of vacuum simulations
- Simulation of edge-welded bellows
- Analysis of simulation results
- Improved model for edge-welded bellows

www.kit.edu

April 1, 2019

Principle of vacuum simulations

- Test Particle Monte Carlo (TPMC) simulation for free molecular flow
 Molflow+
- Surfaces approximated by mesh
 - individual properties of each surface element:
 - sticking coefficient α_i
 - desorption probability and angular distribution cosⁿ(Θ)
 - diffuse (Lambertian) reflection

Particle tracking counts for each surface element

- number of desorptions N_D
- number of hits N_H
- number of adsorptions N_A

ITP&ETP

Principle of vacuum simulations: conductance

Conductance of a tube: $Q = C \cdot \Delta p$

Tube connects two large recipients

Simulation of the conductance with TPMC code

- **Entrance:** desorbing and adsorbing surface ($\alpha_{in} = 100\%$) $N_{D,in}$, $N_{A,in}$
- **Exit:** adsorbing surface ($\alpha_{out} = 100\%$) at exit $N_{A,out}$

Conductance = inflow × transmission probability $W = N_{A,out} / N_{D,in}$

$$C = \frac{1}{4} \cdot \overline{c} \cdot A \cdot W$$

 $N_{\rm H} + 1$

implementation of edge-welded bellows:

- 2 straight tubes at each end
- n bellow elements approximated by mesh

entrance and exit tube surfaces: 30 surface elements per tube

- **n membrane elements:** $60 \times n$ surface elements
 - ➔ large increase in number of surface elements
 - → increase in simulation time by several orders of magnitude
 - → is it possible to **replace the bellow** with a straight tube?

Apr 1, 2019 M. Krause, J. Wolf: Improved model for transmission probabilities of edge-welded bellows based on TPMC simulations

Bellow parameters

Model geometry parameters:

- tube diameter: d = 100 mm
- tube length / tube diameter l/d d
- bellow length / tube length l_B/l
- bellow height / tube diameter h/d
- width of single bellow element w

Monte Carlo data:

- number of desorptions N_D
- number of adsorptions $N_A(E)$

Analysis of simulation data:

transmission probability

$$W(l/d, l_B/l) \equiv \frac{N_A(E)}{N_D}$$

Variation of opening angle $\alpha_{\rm B}$ (h / d)

Variation of h / d changes the transmission probability W considerably
 Common bellow geometry: W changes only by a few percent
 → h / d variance is acceptable for common bellow geometries

Variation of opening angle $\alpha_{\rm B}$ (h/d)

Karlsruhe Institute of Technology

small angles (a): bellow converging towards **straight tube**

- large angles (c): multiple reflections in one bellow element; forward reflection reduced
- Minimum for angles around 55°: bellow surfaces have perfect angle for backward reflection

Variation of bellow length l_B/l and tube length l/d

Model geometry parameters:

- tube diameter: d = 100 mm
- tube length / tube diameter l/d
- bellow length / tube length l_B/l

Fixed parameters:

- bellow height / tube diameter h/d = 0.25
- width of single bellow element w/d = 0.025

Analysis of simulation data:

transmission probability $W(l/d, l_B/l) \equiv \frac{N_A(E)}{N_D}$

8

Variation of bellow length l_B/l and tube length l/d

Transmission probabilities for straight circular tubes from literature (no bellows, empirical):
III (1/1/2)

$$W(l/d,0) = \frac{14+4\frac{l}{d}}{14+18\frac{l}{d}+3(\frac{l}{d})^2}$$

(K. Jousten et al, Handbook of Vacuum Technology, p. 136)

- Plot of TPMC transmission probabilities W versus l/d
- Ansatz for W of the tube:

$$W(l/d,0) = \frac{1 + c_1 \frac{l}{d}}{1 + c_2 \frac{l}{d} + c_3 \left(\frac{l}{d}\right)^2}$$

The c_i parameters were fitted with the TPMC results

ITP&ETP KIT

Variation of bellow length l_R/l and tube length l/d

 $(1 + c4^{*}(I/d))/(1 + c5^{*}(I/d) + c6^{*}(I/d)^{2})$

 0.210 ± 0.024

 1.461 ± 0.028

 0.204 ± 0.025

w/d = 0.025

h/d = 0.250

 $l_{\rm p}/l = 1.0$

- Transmission probabilities of pure bellows (no straight tube elements), *i.e.* $l_{\rm B}/l = 1$
- **Plot** of the **TPMC** transmission probabilities W versus l/d
- l/d dependence follows the same functional form as before, but with **different** fit parameters
- **Ansatz** for *W* of a pure bellow:

$$W(l/d, 1) = \frac{1 + c_4 \frac{l}{d}}{1 + c_5 \frac{l}{d} + c_6 \left(\frac{l}{d}\right)^2}$$

The c_i parameters were fitted with the TPMC results

Fit function

c4

c5

c6

0.6

0.5

0.4

0.3

Variation of bellow length l_B/l and tube length l/d

- What is *W* in general ?
 - Bellow length: $0 \le l_B / l \le 1$
 - 2 tubes, central bellow
- Simulation shows linear dependence of W on l_B/l
- **New ansatz** for *W*:

11

 $W\left(\frac{l}{d},\frac{l_B}{l}\right) =$

$$W_T\left(\frac{l}{d}\right) + \frac{l_B}{l} \cdot \left[W_B\left(\frac{l}{d}\right) - W_T\left(\frac{l}{d}\right)\right]$$

Variation of bellow length l_B/l and tube length l/d

New ansatz for the transmission probability of bellows:

$$W(l/d, l_B/l) = \left(1 - \frac{l_B}{l}\right) \frac{1 + c_1 \frac{l}{d}}{1 + c_2 \frac{l}{d} + c_3 \left(\frac{l}{d}\right)^2} + \frac{l_B}{l} \frac{1 + c_4 \frac{l}{d}}{1 + c_5 \frac{l}{d} + c_6 \left(\frac{l}{d}\right)^2}$$

Fit results for parameters c_i :

		·	0.7 -	
parameter	fit value	standard error σ	0.6 -	l/d = 0.5
c1	0.2915	0.0020	. 1, v 1, v 1, v 1, v 1, v 1, v 1, v 1, v	
c2	1.3018	0.0026	robab	l/d = 1.0
c3	0.2225	0.0015	id uoi	<i>l/d</i> = 1.5
c4	0.2707	0.0069	- 0.3 -	l/d = 2.0
c5	1.5267	0.0077	L 12 L 12 L 12	l/d = 5.0
c6	0.2777	0.0077	0.1 -	l/d = 10.0
			0.0	• <i>l/d</i> = 20.0
(M. Krause, J. Wolf, Vacuum 160 (2019), 402)				0.00 0.25 0.50 0.75 1.00 l_B/l

Apr 1, 2019 M. Krause, J. Wolf: Improved model for transmission probabilities of edge-welded bellows based on TPMC simulations

Comparison of straight tube results with literature

Case without bellows, i.e. straight tubes:

$$W(l/d,0) = \frac{1 + c_1 \frac{l}{d}}{1 + c_2 \frac{l}{d} + c_3 \left(\frac{l}{d}\right)^2}$$

For very long tubes, this becomes:

$$W(l/d,0) \Big|_{(l/d) \to \infty} \longrightarrow (1.322 \pm 0.013) \cdot \left(\frac{l}{d}\right)^{-1}$$

This is in accordance with literature for a straight circular tube:

$$W(l/d) \Big|_{(l/d) \to \infty} \longrightarrow \frac{4}{3} \cdot \left(\frac{l}{d}\right)^{-1}$$

(K. Jousten et al, Handbook of Vacuum Technology, p. 136)

For very long bellow $(l_B/l = 1)$, the model converges to:

$$W(l/d) \rightarrow \frac{c_4}{c_6} \cdot \frac{d}{l} = (0.97 \pm 0.04) \cdot \frac{d}{l} \approx \frac{d}{l}$$

Case without bellows, i.e. straight tubes:

$$W(l/d,0) = \frac{1 + c_1 \frac{l}{d}}{1 + c_2 \frac{l}{d} + c_3 \left(\frac{l}{d}\right)^2}$$

For very short tubes, this becomes:

$$W(l/d,0) \bigg|_{(l/d)\to 0} \longrightarrow 1 - (1.0103 \pm 0.0025) \frac{l}{d}$$

This is **in accordance** with literature for a **straight circular tube**:

$$W(l/d) \Big|_{(l/d) \to 0} \longrightarrow 1 - \frac{l}{d}$$

(K. Jousten et al, Handbook of Vacuum Technology)

Comparison of straight tube results with literature

TPMC simulation:

ITP&ETP

15

Replacement of bellows in TPMC simulations

- Objective: replace a bellow with a straight tube
 - same transmission probability
 - same diameter
 - modified length l'
- Transmission probability of the **bellow**:

$$W(l/d, l_B/l) = \left(1 - \frac{l_B}{l}\right) \frac{1 + c_1 \frac{l}{d}}{1 + c_2 \frac{l}{d} + c_3 \left(\frac{l}{d}\right)^2} + \frac{l_B}{l} \frac{1 + c_4 \frac{l}{d}}{1 + c_5 \frac{l}{d} + c_6 \left(\frac{l}{d}\right)^2}$$

Straight tube with modified length *l* and same transmission probability:

$$W(l'/d,0) = 1 \frac{1 + c_1 \frac{l'}{d}}{1 + c_2 \frac{l'}{d} + c_3 \left(\frac{l'}{d}\right)^2}$$

Replacement of bellows in TPMC simulations

• Ansatz: $W \equiv W(l/d, l_B/l) = W(l'/d, 0)$

$$\frac{l'}{d} = \frac{c_1 - c_2 W + \sqrt{(c_1 - c_2 W)^2 + 4c_3 W(1 - W)}}{2c_3 W}$$

Proposed procedure for replacing bellows in TPMC simulations:

- calculate W with the model introduced here
- calculate the effective length l'/d
- **replace the bellow** in the simulation with a straight tube with length *l'/d*
- this procedure has been tested for a few bellows with different design parameters
 - ➔ error of a few percent
 - ➔ significant reduction in simulation time

Replacement of bellows in TPMC simulations

Reduction in simulation time by several orders of magnitude

Apr 1, 2019 M. Krause, J. Wolf: Improved model for transmission probabilities of edge-welded bellows based on TPMC simulations

Conclusion

- A wide range of bellow design parameters have been simulated
- Variations in bellow widths and heights have no significant effect (for standard bellow parameters)
- A numerical model for transmission probabilities has been found, based on TPMC simulations
- A simple approximation for the transmission probability of very long bellows is W ≈ d/l
- A procedure for replacing bellows by straight tubes in molecular flow simulations has been proposed

Details and results:

(M. Krause, J. Wolf, Vacuum 160 (2019), 402; doi:10.1016/j.vacuum.2018.11.049; arxiv:1810.00768)

Backup slides

Apr 1, 2019 M. Krause, J. Wolf: Improved model for transmission probabilities of edge-welded bellows based on TPMC simulations

Variation of opening angle $\alpha_{\rm B}$ (h / d)

Variation of h / d changes the transmission probability W considerably
 Common bellow geometry: W changes only by a few percent
 → h / d variance is acceptable for common bellow geometries

Variation of opening angle $\alpha_{\rm B}$ (w / d)

Variation of w / d changes the transmission probability W considerably
 Common bellow geometry: W changes only by a few percent
 → w / d variance is acceptable for common bellow geometries

23