

(N)2HDM - Renormalization, Enhanced Higgs Decays and All That

Marcel Krause

Institute for Theoretical Physics (ITP), Karlsruhe Institute of Technology (KIT)

ITP Research Seminar

Nov 21, 2019

Outline of the Talk

- Motivation
- Principle of Gauge Invariance
- Introduction to the (N)2HDM
 - Decoupling and Strong Coupling Regimes
- Automated One-Loop Calculations with (ewN)2HDECAY
- Renormalization of the (N)2HDM
 - Standard and Alternative Tadpole Scheme
 - Mixing Angle Renormalization
- Numerical Results

Motivation: 2HDM and Next-to-Minimal-2HDM

the Standard Model (SM) has theoretical shortcomings and does not provide explanations for all phenomena observed in nature

Motivation: 2HDM and Next-to-Minimal-2HDM

- the Standard Model (SM) has theoretical shortcomings and does not provide explanations for all phenomena observed in nature
- consider the Two-Higgs-Doublet Model ("2HDM") and its singlet extension, *i.e.* the Next-to-Minimal-Two-Higgs-Doublet Model ("N2HDM")

4

Motivation: 2HDM and Next-to-Minimal-2HDM

- the Standard Model (SM) has theoretical shortcomings and does not provide explanations for all phenomena observed in nature
- consider the Two-Higgs-Doublet Model ("2HDM") and its singlet extension, *i.e.* the Next-to-Minimal-Two-Higgs-Doublet Model ("N2HDM")
- **motivations** for studying the 2HDM and N2HDM:
 - simple extensions of the SM
 - no constraints due to SUSY relations (cf. MSSM and NMSSM)
 - can provide a dark matter candidate ("dark sectors" of the (N)2HDM)
 - additional sources of CP violation (complex (N)2HDM)
 - extended scalar sector
 - interesting phenomenology
 - Higgs-to-Higgs (cascade) decays as interesting signatures

Motivation: Electroweak One-Loop Corrections (I)

- predictions for branching ratios in the (N)2HDM to highest precision:
 - indirect search for new physics through the Higgs sector
 - distinguish models in case of discovery of new physics

Motivation: Electroweak One-Loop Corrections (I)

- predictions for branching ratios in the (N)2HDM to highest precision:
 - indirect search for new physics through the Higgs sector
 - distinguish models in case of discovery of new physics
- state-of-the-art code for BRs of Higgs decays in the (N)2HDM: HDECAY and N2HDECAY (based on HDECAY), containing:
 - off-shell decay modes for final-state massive vector bosons / heavy quarks
 - Ioop-induced decays into final-state gluon and photon pairs and $Z\gamma$
 - state-of-the-art QCD corrections, where applicable

[HDECAY: A. Djouadi, J. Kalinowski, and M. Spira, *Comput. Phys. Commun.* 108 (1998) 56-74;
A. Djouadi, J. Kalinowski, M. Mühlleitner, and M. Spira, *Comput. Phys. Commun.* 238 (2019) 214-231]
[N2HDECAY: M. Mühlleitner, M. O. P. Sampaio, R. Santos, J. Wittbrodt, *JHEP* 03 (2017) 094;
I. Engeln, M. Mühlleitner, and J. Wittbrodt, *Comput. Phys. Commun.* 234 (2019) 256-262]

Motivation: Electroweak One-Loop Corrections (II)

- electroweak corrections at one-loop still missing
- previous analysis has shown: they can be of relevant size

[MK, *Master's thesis* (2016), KIT; MK, R. Lorenz, M. M. Mühlleitner, R. Santos, H. Ziesche, *J. High Energ. Phys.* **2016** (2016) 143; MK, M. M. Mühlleitner, R. Santos, H. Ziesche, *Phys. Rev. D* **95** (2017) 075019; MK, D. López-Val, M. Mühlleitner, R. Santos, *JHEP* **12** (2017) 077]

Motivation: Electroweak One-Loop Corrections (II)

- electroweak corrections at one-loop still missing
- previous analysis has shown: they can be of relevant size

[MK, *Master's thesis* (2016), KIT; MK, R. Lorenz, M. M. Mühlleitner, R. Santos, H. Ziesche, *J. High Energ. Phys.* **2016** (2016) 143; MK, M. M. Mühlleitner, R. Santos, H. Ziesche, *Phys. Rev. D* **95** (2017) 075019; MK, D. López-Val, M. Mühlleitner, R. Santos, *JHEP* **12** (2017) 077]

renormalization of scalar mixing angles is non-trivial: existing schemes are numerically unstable, process-dependent or gauge-dependent

search for a suitable renormalization scheme of the mixing angles

Motivation: Electroweak One-Loop Corrections (II)

- electroweak corrections at one-loop still missing
- previous analysis has shown: they can be of relevant size

[MK, *Master's thesis* (2016), KIT; MK, R. Lorenz, M. M. Mühlleitner, R. Santos, H. Ziesche, *J. High Energ. Phys.* **2016** (2016) 143; MK, M. M. Mühlleitner, R. Santos, H. Ziesche, *Phys. Rev. D* **95** (2017) 075019; MK, D. López-Val, M. Mühlleitner, R. Santos, *JHEP* **12** (2017) 077]

renormalization of scalar mixing angles is non-trivial: existing schemes are numerically unstable, process-dependent or gauge-dependent

search for a suitable renormalization scheme of the mixing angles

investigation of the electroweak one-loop corrections:

- size and relevance of the electroweak corrections
- renormalization scheme dependence of the electroweak corrections

📫 es

estimate of theoretical uncertainty due to missing higher orders

size of the electroweak corrections relative to the decay width at tree level

Motivation: Gauge Parameter Independence

many phenomenologically interesting models are based on gauge theories

Motivation: Gauge Parameter Independence

- many phenomenologically interesting models are based on gauge theories
- gauge theories imply the need for gauge-fixing e.g. via general R_ξ gauges
 mecessary for removal of redundant degrees of freedom
- the class of R_{ξ} gauges form an **equivalence class** of the gauge theory equations of motions, observables, ... **must not depend** on ξ

Motivation: Gauge Parameter Independence

- many phenomenologically interesting models are based on gauge theories
- gauge theories imply the need for gauge-fixing e.g. via general R_ξ gauges
 mecessary for removal of redundant degrees of freedom
- the class of R_{ξ} gauges form an **equivalence class** of the gauge theory equations of motions, observables, ... **must not depend** on ξ
- higher-order calculations: cancelation of gauge dependences becomes very intricate

- ξ encodes **redundant** (unphysical) degrees of freedom
 - b observables, decay amplitudes, etc. must not depend on ξ
 - cancelation is ensured by BRST symmetry

[C. Becchi, A. Rouet, R. Stora, Ann. Phys. 98 (1976) 287; M. Z. Iofa, I. V. Tyutin, Theor. Math. Phys. 27 (1976) 316]

- ξ encodes redundant (unphysical) degrees of freedom
 observables, decay amplitudes, etc. must not depend on ξ
 cancelation is ensured by BRST symmetry
 [C. Becchi, A. Rouet, R. Stora, Ann. Phys. 98 (1976) 287; M. Z. Iofa, I. V. Tyutin, Theor. Math. Phys. 27 (1976) 316]
- for LO OS processes, cancelation of ξ dependences is straightforward

- ξ encodes redundant (unphysical) degrees of freedom
 observables, decay amplitudes, etc. must not depend on ξ
 cancelation is ensured by BRST symmetry
 [C. Becchi, A. Rouet, R. Stora, Ann. Phys. 98 (1976) 287; M. Z. Iofa, I. V. Tyutin, Theor. Math. Phys. 27 (1976) 316]
- for LO OS processes, cancelation of ξ dependences is straightforward
- at higher orders, the cancelation becomes very intricate

sources of **gauge dependences** at higher orders:

- genuine loop corrections
- external leg corrections (wave-function renormalization constants)
- explicit tadpole contributions (proper treatment of the vacuum state)
- **counterterms** of all independent parameters

sources of **gauge dependences** at higher orders:

- genuine loop corrections
- external leg corrections (wave-function renormalization constants)
- explicit tadpole contributions (proper treatment of the vacuum state)
- **counterterms** of all independent parameters

with a proper vacuum treatment: all gauge dependences stemming from genuine loop corrections fully cancel against external leg corrections

[P. A. Grassi, P. Gambino, Phys.Rev. D62 (2000) 076002]

- counterterms are necessarily gauge-independent
- simplification of the book-keeping of gauge dependences in a higher-order calculation

- without a proper vacuum treatment: gauge dependences need to be consistently included in counterterms to ensure an overall cancelation
 - counterterms become gauge-dependent

without a proper vacuum treatment: gauge dependences need to be consistently included in counterterms to ensure an overall cancelation

- counterterms become gauge-dependent
- possible violation of the cancelation of gauge dependences: renormalization conditions for mixing matrices and mixing angles
 - SM: CKM matrix solved
 - [P. Gambino, P.A. Grassi, F. Madricardo, *Phys.Lett.* B454 (1999) 98-104;
 A. Barroso, L. Brucher, R. Santos, *Phys.Rev.* D62 (2000) 096003;
 B.A. Kniehl, F. Madricardo, M. Steinhauser, *Phys.Rev.* D62 (2000) 073010;
 Y. Yamada, *Phys.Rev.* D64 (2001) 036008;
 A. Denner, E. Kraus, M. Roth, *Phys.Rev.* D70 (2004) 033002]

(N)2HDM: scalar mixing angles >?

Introduction to the N2HDM: Potential

two complex SU(2)_L Higgs **doublets** and one real gauge **singlet**:

$$\Phi_1 = \begin{pmatrix} \omega_1^+ \\ \frac{v_1 + \rho_1 + i\eta_1}{\sqrt{2}} \end{pmatrix} , \qquad \Phi_2 = \begin{pmatrix} \omega_2^+ \\ \frac{v_2 + \rho_2 + i\eta_2}{\sqrt{2}} \end{pmatrix} , \qquad \Phi_s = v_s + \rho_s$$

non-vanishing vacuum expectation values (VEVs) v_1, v_2, v_s with

$$v^2 := v_1^2 + v_2^2 \approx (246 \text{ GeV})^2$$

Introduction to the N2HDM: Potential

two complex SU(2)_L Higgs **doublets** and one real gauge **singlet**:

$$\Phi_1 = \begin{pmatrix} \omega_1^+ \\ \frac{v_1 + \rho_1 + i\eta_1}{\sqrt{2}} \end{pmatrix} , \qquad \Phi_2 = \begin{pmatrix} \omega_2^+ \\ \frac{v_2 + \rho_2 + i\eta_2}{\sqrt{2}} \end{pmatrix} , \qquad \Phi_s = v_s + \rho_s$$

• non-vanishing vacuum expectation values (VEVs) v_1, v_2, v_s with $v^2 := v_1^2 + v_2^2 \approx (246 \text{ GeV})^2$

• scalar Lagrangian with CP- and \mathbb{Z}_2 -conserving N2HDM potential: $V_{\text{N2HDM}} = m_{11}^2 \left(\Phi_1^{\dagger} \Phi_1 \right) + m_{22}^2 \left(\Phi_2^{\dagger} \Phi_2 \right) - m_{12}^2 \left[\left(\Phi_1^{\dagger} \Phi_2 \right) + \left(\Phi_2^{\dagger} \Phi_1 \right) \right] \\
+ \frac{\lambda_1}{2} \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{\lambda_2}{2} \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) \\
+ \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right) + \frac{\lambda_5}{2} \left[\left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \left(\Phi_2^{\dagger} \Phi_1 \right)^2 \right] \\
+ \frac{1}{2} m_s^2 \Phi_s^2 + \frac{1}{8} \lambda_6 \Phi_s^4 + \frac{1}{2} \lambda_7 \left(\Phi_1^{\dagger} \Phi_1 \right) \Phi_s^2 + \frac{1}{2} \lambda_8 \left(\Phi_2^{\dagger} \Phi_2 \right) \Phi_s^2$

Introduction to the N2HDM: Parameters

- **twelve** real-valued potential parameters:
 - dimensionless $\lambda_i \ (i=1,...,8)$
 - squared mass parameters $m^2_{11}, \, m^2_{22}, m^2_s$ and m^2_{12}
- difference w.r.t. NMSSM: constants not fixed through SUSY relations

Introduction to the N2HDM: Parameters

- twelve real-valued potential parameters:
 - dimensionless λ_i (i = 1, ..., 8)
 - squared mass parameters m_{11}^2 , m_{22}^2 , m_s^2 and m_{12}^2
- difference w.r.t. NMSSM: constants **not fixed through SUSY relations**
- transformation to the Higgs mass basis via scalar mixing angles
 - $\alpha_1, \alpha_2, \alpha_3$ for the CP-even sector
 - β for the CP-odd **and** charged sectors

physical Higgs bosons and Goldstones:

 $(m_{H_1} \leq m_{H_2} \leq m_{H_3})$

2HDM limit: $\alpha_1 \rightarrow \alpha + \frac{\pi}{2}, \ \alpha_2 \rightarrow 0, \ \alpha_3 \rightarrow 0, \ v_s \rightarrow \infty$

Introduction to the N2HDM: Parameters

twelve real-valued potential parameters:

- dimensionless λ_i (i = 1, ..., 8)
- squared mass parameters $m_{11}^2, m_{22}^2, m_s^2$ and m_{12}^2

difference w.r.t. NMSSM: constants **not fixed through SUSY relations**

transformation to the Higgs mass basis via scalar mixing angles

- $\alpha_1, \alpha_2, \alpha_3$ for the CP-even sector
- β for the CP-odd **and** charged sectors

2HDM limit: $\alpha_1 \rightarrow \alpha + \frac{\pi}{2}, \ \alpha_2 \rightarrow 0, \ \alpha_3 \rightarrow 0, \ v_s \rightarrow \infty$

Introduction to the N2HDM: Potential

two complex SU(2)_L Higgs **doublets** and one real gauge **singlet**:

$$\Phi_1 = \begin{pmatrix} \omega_1^+ \\ \frac{v_1 + \rho_1 + i\eta_1}{\sqrt{2}} \end{pmatrix} , \qquad \Phi_2 = \begin{pmatrix} \omega_2^+ \\ \frac{v_2 + \rho_2 + i\eta_2}{\sqrt{2}} \end{pmatrix} , \qquad \Phi_s = v_s + \rho_s$$

• non-vanishing vacuum expectation values (VEVs) v_1, v_2, v_s with $v^2 := v_1^2 + v_2^2 \approx (246 \text{ GeV})^2$

• scalar Lagrangian with CP- and \mathbb{Z}_2 -conserving N2HDM potential: $V_{\text{N2HDM}} = m_{11}^2 \left(\Phi_1^{\dagger} \Phi_1 \right) + m_{22}^2 \left(\Phi_2^{\dagger} \Phi_2 \right) - m_{12}^2 \left[\left(\Phi_1^{\dagger} \Phi_2 \right) + \left(\Phi_2^{\dagger} \Phi_1 \right) \right] \\
+ \frac{\lambda_1}{2} \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{\lambda_2}{2} \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) \\
+ \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right) + \frac{\lambda_5}{2} \left[\left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \left(\Phi_2^{\dagger} \Phi_1 \right)^2 \right] \\
+ \frac{1}{2} m_s^2 \Phi_s^2 + \frac{1}{8} \lambda_6 \Phi_s^4 + \frac{1}{2} \lambda_7 \left(\Phi_1^{\dagger} \Phi_1 \right) \Phi_s^2 + \frac{1}{2} \lambda_8 \left(\Phi_2^{\dagger} \Phi_2 \right) \Phi_s^2$

Introduction to the 2HDM: Potential

two complex SU(2)_L Higgs doublets and one real gauge singlet:

$$\Phi_1 = \begin{pmatrix} \omega_1^+ \\ \frac{v_1 + \rho_1 + i\eta_1}{\sqrt{2}} \end{pmatrix} , \qquad \Phi_2 = \begin{pmatrix} \omega_2^+ \\ \frac{v_2 + \rho_2 + i\eta_2}{\sqrt{2}} \end{pmatrix} , \qquad \Phi_s = v_s + \rho_s$$

non-vanishing vacuum expectation values (VEVs) v_1, v_2, v_s with $v^2 := v_1^2 + v_2^2 \approx (246 \text{ GeV})^2$

scalar Lagrangian with **CP- and** \mathbb{Z}_2 **-conserving** 2HDM potential:

$$V_{\text{P2HDM}} = m_{11}^{2} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) + m_{22}^{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right) - m_{12}^{2} \left[\left(\Phi_{1}^{\dagger} \Phi_{2} \right) + \left(\Phi_{2}^{\dagger} \Phi_{1} \right) \right] \\ + \frac{\lambda_{1}}{2} \left(\Phi_{1}^{\dagger} \Phi_{1} \right)^{2} + \frac{\lambda_{2}}{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right)^{2} + \lambda_{3} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) \left(\Phi_{2}^{\dagger} \Phi_{2} \right) \\ + \lambda_{4} \left(\Phi_{1}^{\dagger} \Phi_{2} \right) \left(\Phi_{2}^{\dagger} \Phi_{1} \right) + \frac{\lambda_{5}}{2} \left[\left(\Phi_{1}^{\dagger} \Phi_{2} \right)^{2} + \left(\Phi_{2}^{\dagger} \Phi_{1} \right)^{2} \right] \\ - \frac{1}{2} m_{s}^{2} \Phi_{s}^{2} + \frac{1}{8} \lambda_{0} \Phi_{s}^{4} + \frac{1}{2} \lambda_{7} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) \Phi_{s}^{2} + \frac{1}{2} \lambda_{8} \left(\Phi_{2}^{\dagger} \Phi_{2} \right) \Phi_{s}^{2}$$

Introduction to the 2HDM: Potential

• **two** complex SU(2)_L Higgs **doublets**

$$\Phi_1 = \begin{pmatrix} \omega_1^+ \\ \frac{v_1 + \rho_1 + i\eta_1}{\sqrt{2}} \end{pmatrix} , \qquad \Phi_2 = \begin{pmatrix} \omega_2^+ \\ \frac{v_2 + \rho_2 + i\eta_2}{\sqrt{2}} \end{pmatrix}$$

• non-vanishing vacuum expectation values (VEVs) v_1, v_2 with $v^2 := v_1^2 + v_2^2 \approx (246 \text{ GeV})^2$

scalar Lagrangian with CP- and Z₂-conserving 2HDM potential: $V_{2HDM} = m_{11}^{2} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) + m_{22}^{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right) - m_{12}^{2} \left[\left(\Phi_{1}^{\dagger} \Phi_{2} \right) + \left(\Phi_{2}^{\dagger} \Phi_{1} \right) \right] \\
+ \frac{\lambda_{1}}{2} \left(\Phi_{1}^{\dagger} \Phi_{1} \right)^{2} + \frac{\lambda_{2}}{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right)^{2} + \lambda_{3} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) \left(\Phi_{2}^{\dagger} \Phi_{2} \right) \\
+ \lambda_{4} \left(\Phi_{1}^{\dagger} \Phi_{2} \right) \left(\Phi_{2}^{\dagger} \Phi_{1} \right) + \frac{\lambda_{5}}{2} \left[\left(\Phi_{1}^{\dagger} \Phi_{2} \right)^{2} + \left(\Phi_{2}^{\dagger} \Phi_{1} \right)^{2} \right]$

Introduction to the 2HDM: Parameters (I)

- eight real-valued potential parameters:
 - dimensionless λ_i (i = 1, ..., 5)
 - squared mass parameters m_{11}^2, m_{22}^2 and m_{12}^2
- difference w.r.t. MSSM: constants **not fixed through SUSY relations**
- transformation to the Higgs mass basis via scalar mixing angles
 - \bullet a for the CP-even sector
 - β for the CP-odd **and** charged sectors

 $(m_h < m_H)$

SM limit:
$$\sin(\beta - \alpha) \rightarrow 1$$

Introduction to the 2HDM: Parameters (I)

eight real-valued potential parameters:

- dimensionless $\lambda_i \ (i=1,...,5)$
- squared mass parameters $m^2_{11},\,m^2_{22}\,$ and m^2_{12}

difference w.r.t. MSSM: constants not fixed through SUSY relations

transformation to the Higgs mass basis via scalar mixing angles

- α for the CP-even sector
- β for the CP-odd **and** charged sectors

physical Higgs bosons and Goldstones:

 $(m_h \le m_H)$

SM limit:
$$\sin(\beta - \alpha) \rightarrow 1$$

Introduction to the 2HDM: Parameters (II)

• masses of heavier Higgs bosons $\phi_{\text{heavy}} \in \{H, A, H^{\pm}\}$ take the form

$$m_{\phi_{\text{heavy}}}^2 \approx c_{\phi_{\text{heavy}}}^2 \frac{m_{12}^2}{\sin\beta\cos\beta} + f(\lambda_i)v^2$$

[S. Kanemura, Y. Okada, E. Senaha, C. P. Yuan, *Phys. Rev. D* 70 (2004) 115002]

where $f(\lambda_i)$ is a linear combination of the λ_i and

$$c_{\phi_{\text{heavy}}} = \begin{cases} 1 & \text{for } \phi_{\text{heavy}} \in \{A, H^{\pm}\}\\ \sin(\beta - \alpha) & \text{for } \phi_{\text{heavy}} = H \end{cases}$$

Introduction to the 2HDM: Parameters (II)

• masses of heavier Higgs bosons $\phi_{\text{heavy}} \in \{H, A, H^{\pm}\}$ take the form

$$m_{\phi_{\text{heavy}}}^2 \approx c_{\phi_{\text{heavy}}}^2 \frac{m_{12}^2}{\sin\beta\cos\beta} + f(\lambda_i)v^2$$

[S. Kanemura, Y. Okada, E. Senaha, C. P. Yuan, Phys. Rev. D 70 (2004) 115002]

where $f(\lambda_i)$ is a linear combination of the λ_i and

$$c_{\phi_{\text{heavy}}} = \begin{cases} 1 & \text{for } \phi_{\text{heavy}} \in \{A, H^{\pm}\}\\ \sin(\beta - \alpha) & \text{for } \phi_{\text{heavy}} = H \end{cases}$$

two interesting limits in case that m²_{\(\phi\)heavy} becomes large:
decoupling: m²₁₂/sin \(\beta\) cos \(\beta\)} > f(\(\lambda\)_i)v^2 for all heavier Higgs bosons
m²_{\(\phi\)heavy} dominated by large m²₁₂/sin \(\beta\) cos \(\beta\), independent of the \(\lambda\)_i
\(\lambda\)_i are small while the m²_{\(\phi\)heavy} are still large

Introduction to the 2HDM: Parameters (II)

• masses of heavier Higgs bosons $\phi_{\text{heavy}} \in \{H, A, H^{\pm}\}$ take the form

$$m_{\phi_{\text{heavy}}}^2 \approx c_{\phi_{\text{heavy}}}^2 \frac{m_{12}^2}{\sin\beta\cos\beta} + f(\lambda_i)v^2$$

[S. Kanemura, Y. Okada, E. Senaha, C. P. Yuan, Phys. Rev. D 70 (2004) 115002]

where $f(\lambda_i)$ is a linear combination of the λ_i and

$$c_{\phi_{\text{heavy}}} = \begin{cases} 1 & \text{for } \phi_{\text{heavy}} \in \{A, H^{\pm}\}\\ \sin(\beta - \alpha) & \text{for } \phi_{\text{heavy}} = H \end{cases}$$

two interesting limits in case that m²_{φheavy} becomes large:
decoupling: m²₁₂/sinβcosβ ≫ f(λ_i)v² for all heavier Higgs bosons
m²_{φheavy} dominated by large m²₁₂/sinβcosβ, independent of the λ_i
λ_i are small while the m²_{φheavy} are still large
strong coupling: m²₁₂/sinβcosβ ≤ f(λ_i)v² for at least one heavier Higgs boson
large λ_i required for large m²_{φheavy}

Decoupling Limit of the 2HDM

• decoupling: $\frac{m_{12}^2}{\sin\beta\cos\beta} \gg f(\lambda_i)v^2$ for all $\phi_{\text{heavy}} \in \{H, A, H^{\pm}\}$

\$m_{\phi_{heavy}}^2\$ dominated by large \$m_{12}^2 / \sin \beta \cos \beta\$, independent of the \$\lambda_i\$
 \$\lambda_i\$ are small while the \$m_{\phi_{heavy}}^2\$ are still large

trilinear and **quartic** Higgs couplings can **become small**

Decoupling Limit of the 2HDM

• decoupling: $\frac{m_{12}^2}{\sin\beta\cos\beta} \gg f(\lambda_i)v^2$ for all $\phi_{\text{heavy}} \in \{H, A, H^{\pm}\}$

\$m_{\phi_{heavy}}^2\$ dominated by large \$m_{12}^2 / \sin\beta\cos\beta\$, independent of the \$\lambda_i\$
 \$\lambda_i\$ are small while the \$m_{\phi_{heavy}}^2\$ are still large

- **trilinear** and **quartic** Higgs couplings can **become small**
- decoupling theorem: loop effects due to heavy Higgs bosons vanish in the limit $m_{\phi_{heavy}} \rightarrow \infty$ [T. Appelquist, J. Carazzone, *Phys. Rev. D* 11 (1975) 2856]
- reflects the **decoupling limit in the MSSM** where the Higgs couplings are given in terms of gauge couplings g and g' due to SUSY relations

Wrong-Sign Limit of the 2HDM

• even with large $\frac{m_{12}^2}{\sin\beta\cos\beta} \gg f(\lambda_i)v^2$, decoupling is **not always guaranteed**

Wrong-Sign Limit of the 2HDM

• even with large $\frac{m_{12}^2}{\sin\beta\cos\beta} \gg f(\lambda_i)v^2$, decoupling is **not always guaranteed**

wrong-sign limit of the type II (and flipped) 2HDM:

- relative minus sign of the down-type Yukawa couplings compared to the up-type and Higgs-vector-vector couplings
- reached for $\sin(\alpha + \beta) \rightarrow 1$
- **a** large $\tan\beta$ required in order to simultaneously achieve the SM limit

[P. M. Ferreira, R. Guedes, M. O. P. Sampaio, R. Santos, JHEP 12 (2014) 067;
 D. Fontes, J. C. Romao, J. P. Silva, Phys. Rev. D 90 (2014) 015021 and references therein]

Wrong-Sign Limit of the 2HDM

• even with large $\frac{m_{12}^2}{\sin\beta\cos\beta} \gg f(\lambda_i)v^2$, decoupling is **not always guaranteed**

wrong-sign limit of the type II (and flipped) 2HDM:

- relative minus sign of the down-type Yukawa couplings compared to the up-type and Higgs-vector-vector couplings
- reached for $\sin(\alpha + \beta) \rightarrow 1$
- large $\tan\beta$ required in order to simultaneously achieve the SM limit

[P. M. Ferreira, R. Guedes, M. O. P. Sampaio, R. Santos, JHEP 12 (2014) 067;
 D. Fontes, J. C. Romao, J. P. Silva, Phys. Rev. D 90 (2014) 015021 and references therein]

in the wrong-sign regime of the 2HDM, decoupling is strongly disfavored and strong coupling easily arises

[P. M. Ferreira, J. F. Gunion, H. E. Haber, R. Santos, Phys. Rev. D 89 (2014) 115003]

Decoupling and Correct-/Wrong-Sign Limit

- consider *e.g.* the ratio λ_{HHh}/m_H^2 appearing in the **NLO corrections**
- apply the SM limit $sin(\beta \alpha) \rightarrow 1$ and the decoupling limit

$$m_H^2 \approx \frac{m_{12}^2}{\sin\beta\cos\beta} \gg f(\lambda_i)v^2$$
 and $m_H^2 \gg m_h^2$

Decoupling and Correct-/Wrong-Sign Limit

- consider *e.g.* the ratio λ_{HHh}/m_H^2 appearing in the **NLO corrections**
- apply the SM limit $sin(\beta \alpha) \rightarrow 1$ and the decoupling limit

$$m_H^2 \approx \frac{m_{12}^2}{\sin\beta\cos\beta} \gg f(\lambda_i)v^2 \text{ and } m_H^2 \gg m_h^2$$

in these limits, we find:

 $\begin{array}{ccc} H & \frac{\lambda_{HHh}}{m_{H}^{2}} = -\frac{1}{m_{H}^{2}v}\frac{\sin(\beta-\alpha)}{\sin(2\beta)}\left[\sin(2\alpha)\left(2m_{H}^{2}+m_{h}^{2}\right) - \frac{m_{12}^{2}}{\sin\beta\cos\beta}\left(3\sin(2\alpha)+\sin(2\beta)\right)\right] \\ & \left\{ \begin{array}{c} \approx 0 & (\text{correct-sign limit, } \sin(\beta-\alpha) \rightarrow 1) \\ \approx \frac{2}{v} & (\text{wrong-sign limit, } \sin(\beta-\alpha) \rightarrow 1, \ \sin(\alpha+\beta) \rightarrow 1, \ \tan\beta \gg 1) \\ \left[\text{MK, M. Mühlleitner, R. Santos, H. Ziesche, Phys. Rev. D 95 (2017) 075019}\right] \end{array} \right.$

decoupling in the correct-sign regime (decoupling theorem)
 no decoupling in the wrong-sign regime (non-decoupling effects)

Strong Coupling Limit of the 2HDM

- **strong coupling**: $\frac{m_{12}^2}{\sin\beta\cos\beta} \lesssim f(\lambda_i)v^2$ for at least one $\phi_{\text{heavy}} \in \{H, A, H^{\pm}\}$
 - large λ_i required for large $m_{\phi_{\text{heavy}}}^2$
- trilinear and quartic Higgs couplings become large

Strong Coupling Limit of the 2HDM

- **strong coupling**: $\frac{m_{12}^2}{\sin\beta\cos\beta} \lesssim f(\lambda_i)v^2$ for at least one $\phi_{\text{heavy}} \in \{H, A, H^{\pm}\}$
 - large λ_i required for large $m_{\phi_{\text{heavy}}}^2$
- trilinear and quartic Higgs couplings become large
- decoupling theorem **does not apply**: loop effects due to heavy Higgs bosons do not vanish in the limit $m_{\phi_{heavy}} \rightarrow \infty$
- **reason**: radiative corrections due to heavy Higgs bosons develop a **power-law**-like behavior in $m_{\phi_{\text{heavy}}}$

for $H \to h h$: corrections grow with $m_{\phi_{\text{heavy}}}^4$

[S. Kanemura, Y. Okada, E. Senaha, C. P. Yuan, *Phys. Rev. D* 70 (2004) 115002;
 S. Kanemura, S. Kiyoura, Y. Okada, E. Senaha, C. P. Yuan, *Phys. Lett.* B558 (2003) 157]

aim: calculate all (N)2HDM Higgs decays at one-loop (electroweak)

- aim: calculate all (N)2HDM Higgs decays at one-loop (electroweak)
- **method:** full diagrammatic calculation

[FeynArts: T. Hahn, Comput. Phys. Commun. 140 (2001) 418;
 FeynCalc: V. Shtabovenko, R. Mertig and F. Orellana, Comput. Phys. Commun. 207 (2016) 432-444;
 LoopTools: T. Hahn, M. Pérez-Victoria, Comput. Phys. Commun. 118 (1999) 153]

21.11.2019 - ITP Research Seminar

45

- aim: calculate all (N)2HDM Higgs decays at one-loop (electroweak)
- **method:** full diagrammatic calculation

[FeynArts: T. Hahn, Comput. Phys. Commun. 140 (2001) 418;
 FeynCalc: V. Shtabovenko, R. Mertig and F. Orellana, Comput. Phys. Commun. 207 (2016) 432-444;
 LoopTools: T. Hahn, M. Pérez-Victoria, Comput. Phys. Commun. 118 (1999) 153]

21.11.2019 - ITP Research Seminar

- aim: calculate all (N)2HDM Higgs decays at one-loop (electroweak)
- **method:** full diagrammatic calculation

[FeynArts: T. Hahn, *Comput. Phys. Commun.* **140** (2001) 418; FeynCalc: V. Shtabovenko, R. Mertig and F. Orellana, *Comput. Phys. Commun.* **207** (2016) 432-444; LoopTools: T. Hahn, M. Pérez-Victoria, *Comput. Phys. Commun.* **118** (1999) 153]

contributing topologies at one-loop level:

contributing topologies at one-loop level:

2HDM decay channels that are considered (OS, non-loop-induced):

 $\begin{array}{l} h/H/A \to f\bar{f} \ (f=c,s,t,b,\mu,\tau) \\ h/H \to VV \ (V=W^{\pm},Z) \\ h/H \to VS \ (V=Z,W^{\pm},S=A,H^{\pm}) \\ H^{\pm} \to f\bar{f} \ (f=c,t,\nu_{\mu},\nu_{\tau} \ , \ \bar{f}=\bar{s}, \ \bar{b}, \mu^{+}, \tau^{+}) \end{array} \begin{array}{l} h/H \to SS \ (S=A,H^{\pm}) \\ H^{\pm} \to VS \ (V=W^{\pm},S=h,H,A) \\ h/H \to VS \ (V=Z,W^{\pm},S=h,H,H^{\pm}) \\ H \to hh \end{array}$

contributing topologies at one-loop level:

2HDM decay channels that are considered (OS, non-loop-induced):

 $\begin{array}{l} h/H/A \to f\bar{f} \ (f=c,s,t,b,\mu,\tau) \\ h/H \to VV \ (V=W^{\pm},Z) \\ h/H \to VS \ (V=Z,W^{\pm},S=A,H^{\pm}) \\ H^{\pm} \to f\bar{f} \ (f=c,t,\nu_{\mu},\nu_{\tau} \ , \ \bar{f}=\bar{s}, \ \bar{b}, \mu^{+}, \tau^{+}) \end{array} \begin{array}{l} h/H \to SS \ (S=A,H^{\pm}) \\ H^{\pm} \to VS \ (V=W^{\pm},S=h,H,A) \\ h/H \to VS \ (V=Z,W^{\pm},S=h,H,H^{\pm}) \\ H \to hh \end{array}$

semi-automated calculation of the decays with 2HDMCalc

https://github.com/marcel-krause/2HDMCalc

contributing topologies at one-loop level:

N2HDM decay channels that are considered (OS, non-loop-induced):

$$\begin{array}{lll} & H_i/A \to f \, \bar{f} & (f \, \bar{f} = s \, \bar{s}, c \, \bar{c}, b \, \bar{b}, t \, \bar{t}, \mu^- \, \mu^+, \tau^- \, \tau^+) & A \to V \, S & (V \, S = Z \, H_i, W^\pm H^\mp) \\ & H_i \to V \, V & (V \, V = W^\pm \, W^\mp, Z \, Z) & H_2 \to H_1 \, H_1 \\ & H_i \to V \, S & (V \, S = Z \, A, W^\pm \, H^\mp) & H_3 \to H_1 \, H_1 \\ & H_i \to S \, S & (S \, S = A \, A, H^\pm \, H^\mp) & H_3 \to H_1 \, H_2 \\ & H^\pm \to V \, S & (V \, S = W^\pm \, H_i, W^\pm A) & H_3 \to H_2 \, H_2 \\ & H^\pm \to f \, \bar{f} & (f = u \, \bar{s}, u \, \bar{b}, c \, \bar{d}, c \, \bar{s}, c \, \bar{b}, t \, \bar{d}, t \, \bar{s}, t \, \bar{b}, \nu_\mu \, \mu^+, \nu_\tau \, \tau^+) \end{array}$$

contributing topologies at one-loop level:

N2HDM decay channels that are considered (OS, non-loop-induced):

$$\begin{array}{lll} & H_i/A \to f \, \bar{f} & (f \, \bar{f} = s \, \bar{s}, c \, \bar{c}, b \, \bar{b}, t \, \bar{t}, \mu^- \, \mu^+, \tau^- \, \tau^+) & A \to V \, S & (V \, S = Z \, H_i, W^\pm H^\mp) \\ & H_i \to V \, V & (V \, V = W^\pm \, W^\mp, Z \, Z) & H_2 \to H_1 \, H_1 \\ & H_i \to V \, S & (V \, S = Z \, A, W^\pm \, H^\mp) & H_3 \to H_1 \, H_1 \\ & H_i \to S \, S & (S \, S = A \, A, H^\pm \, H^\mp) & H_3 \to H_1 \, H_2 \\ & H^\pm \to V \, S & (V \, S = W^\pm \, H_i, W^\pm \, A) & H_3 \to H_2 \, H_2 \\ & H^\pm \to f \, \bar{f} & (f = u \, \bar{s}, u \, \bar{b}, c \, \bar{d}, c \, \bar{s}, c \, \bar{b}, t \, \bar{d}, t \, \bar{s}, t \, \bar{b}, \nu_\mu \, \mu^+, \nu_\tau \, \tau^+) \end{array}$$

semi-automated calculation of the decays with N2HDMCalc

https://github.com/marcel-krause/N2HDMCalc

many diagrams contain UV divergences, i.e. formally, we have

many diagrams contain UV divergences, i.e. formally, we have

use dimensional regularization ($d = 4 - 2\epsilon$) to isolate the divergences:

many diagrams contain UV divergences, i.e. formally, we have

use dimensional regularization ($d = 4 - 2\epsilon$) to isolate the divergences:

- consistently remove the divergences via renormalization
- idea: split 'bare' parameters into renormalized values and counterterms

$$m_i^2 \to m_i^2 + \delta m_i^2$$

counterterms need to be fixed via **renormalization conditions**

- set of free parameters of the 2HDM (excluding CKM elements, ...) $\{T_h, T_H, \alpha_{em}, m_W, m_Z, m_f, m_h, m_H, m_A, m_{H^{\pm}}, \alpha, \beta, m_{12}^2, \cdots \}$
- set of free parameters of the N2HDM (excluding CKM elements, ...)

 $\left\{T_{H_1}, T_{H_2}, T_{H_3}, \alpha_{\rm em}, m_W, m_Z, m_f, m_{H_1}, m_{H_2}, m_{H_3}, m_A, m_{H^{\pm}}, \alpha_1, \alpha_2, \alpha_3, \beta, m_{12}^2, v_s, \cdots\right\}$

set of free parameters of the 2HDM (excluding CKM elements, ...)

 $\left\{T_h, T_H, \alpha_{\rm em}, m_W, m_Z, m_f, m_h, m_H, m_A, m_{H^{\pm}}, \alpha, \beta, m_{12}^2, \cdots\right\}$

set of free parameters of the N2HDM (excluding CKM elements, ...)

 $T_{H_1}, T_{H_2}, T_{H_3}, \alpha_{\rm em}, m_W, m_Z, m_f, m_{H_1}, m_{H_2}, m_{H_3}, m_A, m_{H^{\pm}}, \alpha_1, \alpha_2, \alpha_3, \beta, m_{12}^2 v_s, \cdots \bigg\}$

set of free parameters of the 2HDM (excluding CKM elements, ...)

 $\left\{T_h, T_H, \alpha_{\rm em}, m_W, m_Z, m_f, m_h, m_H, m_A, m_{H^{\pm}}, \alpha, \beta, m_{12}^2, \cdots\right\}$

set of free parameters of the N2HDM (excluding CKM elements, ...)

 $T_{H_1}, T_{H_2}, T_{H_3}, \alpha_{\rm em}, m_W, m_Z, m_f, m_{H_1}, m_{H_2}, m_{H_3}, m_A, m_{H^{\pm}}, \alpha_1, \alpha_2, \alpha_3, \beta, m_{12}^2 v_s, \cdots \bigg\}$

set of free parameters of the 2HDM (excluding CKM elements, ...)

 $\left\{T_{h}, T_{H}, \alpha_{\text{em}}, m_{W}, m_{Z}, m_{f}, m_{h}, m_{H}, m_{A}, m_{H^{\pm}}, \alpha, \beta, m_{12}^{2}, \cdots\right\}$

set of free parameters of the N2HDM (excluding CKM elements, ...)

 $T_{H_1}, T_{H_2}, T_{H_3}, \alpha_{\rm em}, m_W, m_Z, m_f, m_{H_1}, m_{H_2}, m_{H_3}, m_A, m_{H^{\pm}}, \alpha_1, \alpha_2, \alpha_3, \beta, m_{12}^2 v_s, \cdots \bigg\}$

- renormalization program for the (N)2HDM:
 - tadpole terms standard / alternative tadpole scheme

 - fine-structure constant at Z mass
 - soft- \mathbb{Z}_2 -breaking scale $m_{12}^2 \implies \overline{\mathrm{MS}}$
 - singlet VEV $v_s \implies \overline{\mathrm{MS}}$
 - 🔹 scalar mixing angles 🛛 🔲 ?

[MK, *Master's thesis* (2016), KIT;
 MK, R. Lorenz, M. M. Mühlleitner, R. Santos, H. Ziesche, *J. High Energ. Phys.* 2016 (2016) 143;
 MK, M. M. Mühlleitner, R. Santos, H. Ziesche, *Phys. Rev. D* 95 (2017) 075019;
 MK, D. López-Val, M. Mühlleitner, R. Santos, *JHEP* 12 (2017) 077]

Renormalization: General Tadpole Conditions

renormalization conditions for the tadpole terms:

conversion from gauge to mass basis:

$$\begin{pmatrix} \delta T_1 \\ \delta T_2 \end{pmatrix} = \begin{pmatrix} c_\alpha & -s_\alpha \\ s_\alpha & c_\alpha \end{pmatrix} \begin{pmatrix} \delta T_H \\ \delta T_h \end{pmatrix} = \begin{pmatrix} c_\alpha \delta T_H - s_\alpha \delta T_h \\ s_\alpha \delta T_H + c_\alpha \delta T_h \end{pmatrix}$$

Renormalization: General Tadpole Conditions

renormalization conditions for the tadpole terms:

conversion from gauge to mass basis:

$$\begin{pmatrix} \delta T_1 \\ \delta T_2 \end{pmatrix} = \begin{pmatrix} c_\alpha & -s_\alpha \\ s_\alpha & c_\alpha \end{pmatrix} \begin{pmatrix} \delta T_H \\ \delta T_h \end{pmatrix} = \begin{pmatrix} c_\alpha \delta T_H - s_\alpha \delta T_h \\ s_\alpha \delta T_H + c_\alpha \delta T_h \end{pmatrix}$$

purpose: restoring the minimum conditions of the potential at NLO

textbook explanation: no tadpole diagrams in NLO calculations really?

Renormalization: Standard Tadpole Scheme

- standard scheme: VEVs are derived from the loop-corrected potential
- VEVs in the mass relations produce correct one-loop OS masses, e.g.

$$m_W^2 = g^2 \frac{v^2}{4}$$
, $m_A^2 = \frac{m_{12}^2}{\sin\beta\cos\beta} - \lambda_5 v^2$

Renormalization: Standard Tadpole Scheme

- standard scheme: VEVs are derived from the loop-corrected potential
- VEVs in the mass relations produce correct one-loop OS masses, e.g.

$$m_W^2 = g^2 \frac{v^2}{4}$$
, $m_A^2 = \frac{m_{12}^2}{\sin\beta\cos\beta} - \lambda_5 v^2$

tadpole terms appear explicitly in the bare mass matrices

mass matrix counterterms contain the tadpole counterterms:

$$\delta D_{\phi}^2 \approx \begin{pmatrix} \delta m_{\phi_1}^2 & 0\\ 0 & \delta m_{\phi_2}^2 \end{pmatrix} + \begin{pmatrix} \delta T_{\phi_1 \phi_1} & \delta T_{\phi_1 \phi_2}\\ \delta T_{\phi_1 \phi_2} & \delta T_{\phi_2 \phi_2} \end{pmatrix}$$

Renormalization: Standard Tadpole Scheme

- standard scheme: VEVs are derived from the loop-corrected potential
- VEVs in the mass relations produce correct one-loop OS masses, e.g.

$$m_W^2 = g^2 \frac{v^2}{4}$$
, $m_A^2 = \frac{m_{12}^2}{\sin\beta\cos\beta} - \lambda_5 v^2$

tadpole terms appear explicitly in the bare mass matrices

mass matrix counterterms contain the tadpole counterterms:

$$\delta D_{\phi}^2 \approx \begin{pmatrix} \delta m_{\phi_1}^2 & 0\\ 0 & \delta m_{\phi_2}^2 \end{pmatrix} + \begin{pmatrix} \delta T_{\phi_1\phi_1} & \delta T_{\phi_1\phi_2}\\ \delta T_{\phi_1\phi_2} & \delta T_{\phi_2\phi_2} \end{pmatrix}$$

- one-loop corrected potential is gauge-dependent
 - > VEVs are gauge-dependent

mass counterterms become gauge-dependent

alternative scheme: VEVs represent the same minimum as at tree level

[based on: J. Fleischer, F. Jegerlehner, Phys. Rev. D 23 (1981) 2001-2026]

- alternative scheme: VEVs represent the same minimum as at tree level [based on: J. Fleischer, F. Jegerlehner, Phys. Rev. D 23 (1981) 2001-2026]
- bare masses are expressed through gauge-independent tree-level VEVs
 mass CTs become gauge-independent

- alternative scheme: VEVs represent the same minimum as at tree level [based on: J. Fleischer, F. Jegerlehner, Phys. Rev. D 23 (1981) 2001-2026]
- bare masses are expressed through gauge-independent tree-level VEVs
 mass CTs become gauge-independent
- correct minimum conditions at NLO require a shift in the VEVs

$$v_1 \rightarrow v_1 + \delta v_1$$
, $v_2 \rightarrow v_2 + \delta v_2$

fixation of the shifts by applying the minimum conditions:

$$\begin{pmatrix} \delta v_1 \\ \delta v_2 \end{pmatrix} = \begin{pmatrix} \frac{T_H}{m_H^2} \mathbf{c}_\alpha - \frac{T_h}{m_h^2} \mathbf{s}_\alpha \\ \frac{T_H}{m_H^2} \mathbf{s}_\alpha + \frac{T_h}{m_h^2} \mathbf{c}_\alpha \end{pmatrix}$$

- alternative scheme: VEVs represent the same minimum as at tree level [based on: J. Fleischer, F. Jegerlehner, Phys. Rev. D 23 (1981) 2001-2026]
- bare masses are expressed through gauge-independent tree-level VEVs
 mass CTs become gauge-independent
- correct minimum conditions at NLO require a shift in the VEVs

$$v_1 \rightarrow v_1 + \delta v_1$$
, $v_2 \rightarrow v_2 + \delta v_2$

fixation of the shifts by applying the minimum conditions:

$$\begin{pmatrix} \delta v_1 \\ \delta v_2 \end{pmatrix} = \begin{pmatrix} \frac{T_H}{m_H^2} \mathbf{c}_\alpha - \frac{T_h}{m_h^2} \mathbf{s}_\alpha \\ \frac{T_H}{m_H^2} \mathbf{s}_\alpha + \frac{T_h}{m_h^2} \mathbf{c}_\alpha \end{pmatrix}$$

- the shifts translate into every CT, wave function renormalization constants and Feynman rules
- alternative tadpole scheme worked out for the (N)2HDM at one-loop

• example: **W boson mass**

$$m_W^2 = g^2 \frac{v^2}{4}$$

example: W boson mass

 $m_W^2 = g^2 \frac{v^2}{4} \quad \longrightarrow \quad m_W^2 + g^2 \frac{v_1 \delta v_1 + v_2 \delta v_2}{2}$

example: W boson mass

$$m_W^2 = g^2 \frac{v^2}{4} \longrightarrow m_W^2 + g^2 \frac{v_1 \delta v_1 + v_2 \delta v_2}{2} = m_W^2 + i \left(\begin{array}{c} \bigcirc \\ \downarrow \\ W^{\pm} & \downarrow H \\ & \swarrow \end{array} \right) + i \left(\begin{array}{c} \bigcirc \\ W^{\pm} & \downarrow h \\ & \swarrow \end{array} \right) + i \left(\begin{array}{c} \bigcirc \\ W^{\pm} & \downarrow h \\ & \swarrow \end{array} \right)$$

example: W boson mass

$$m_W^2 = g^2 \frac{v^2}{4} \longrightarrow m_W^2 + g^2 \frac{v_1 \delta v_1 + v_2 \delta v_2}{2} = m_W^2 + i \left(\begin{array}{c} \bigcirc \\ W^{\pm} & H \\ & W^{\pm} \end{array} \right) + i \left(\begin{array}{c} \bigcirc \\ W^{\pm} & H \\ & W^{\pm} \end{array} \right) + i \left(\begin{array}{c} \bigcirc \\ W^{\pm} & H \\ & W^{\pm} \end{array} \right)$$

example: coupling between Higgs and Z bosons

$$ig_{HZZ} = \frac{ig^2}{2c_W^2} \left(c_\alpha v_1 + s_\alpha v_2 \right) \quad , \qquad ig_{HHZZ} = \frac{ig^2}{2c_W^2}$$

$$ig_{HZZ} \rightarrow ig_{HZZ} + \frac{ig^2}{2c_W^2} \left(c_\alpha \delta v_1 + s_\alpha \delta v_2 \right) = ig_{HZZ} + \left(\begin{array}{c} \bigcirc \\ H & \swarrow \\ I & \swarrow \\ I & I \\ I$$

$$m_W^2 = g^2 \frac{v^2}{4} \longrightarrow m_W^2 + g^2 \frac{v_1 \delta v_1 + v_2 \delta v_2}{2} = m_W^2 + i \left(\begin{array}{c} \bigcirc \\ W^{\pm} & H \\ & W^{\pm} \end{array} \right) + i \left(\begin{array}{c} \bigcirc \\ W^{\pm} & H \\ & W^{\pm} \end{array} \right) + i \left(\begin{array}{c} \bigcirc \\ W^{\pm} & H \\ & W^{\pm} \end{array} \right)$$

example: coupling between Higgs and Z bosons

$$ig_{HZZ} = \frac{ig^2}{2c_W^2} \left(c_\alpha v_1 + s_\alpha v_2 \right) \quad , \qquad ig_{HHZZ} = \frac{ig^2}{2c_W^2}$$

$$ig_{HZZ} \rightarrow ig_{HZZ} + \frac{ig^2}{2c_W^2} \left(c_\alpha \delta v_1 + s_\alpha \delta v_2 \right) = ig_{HZZ} + \left(\begin{array}{c} \bigcirc \\ H & \swarrow \\ H & \swarrow \\ Z \end{array} \right)_{\text{trunc}}$$

effects of the alternative tadpole scheme:

tadpole diagrams are added everywhere where they exist in the 2HDM

- mass counterterms become manifestly gauge-independent
- tadpole counterterms in the scalar sector are removed

Renormalization: Scalar Mixing Angles (I)

- **•** renormalization of mixing angles α and β is **non-trivial** in the 2HDM
- simplest approach: \overline{MS} conditions for α and β (alternatively: λ_3)
 - can be **numerically unstable** in one-to-two-body decays
 - divergences for degenerate masses / "dead corners" of parameter space

[MK, R. Lorenz, M. Mühlleitner, R. Santos, H. Ziesche, *J. High Energ. Phys.* **2016** (2016) 143; A. Denner, S. Dittmaier, J.-N. Lang, *JHEP* **2018** (2018) 104 and references therein]

Renormalization: Scalar Mixing Angles (I)

- **•** renormalization of mixing angles α and β is **non-trivial** in the 2HDM
- simplest approach: $\overline{\mathrm{MS}}$ conditions for α and β (alternatively: λ_3)
 - can be numerically unstable in one-to-two-body decays
 - divergences for degenerate masses / "dead corners" of parameter space

[MK, R. Lorenz, M. Mühlleitner, R. Santos, H. Ziesche, *J. High Energ. Phys.* **2016** (2016) 143; A. Denner, S. Dittmaier, J.-N. Lang, *JHEP* **2018** (2018) 104 and references therein]

- analyze renormalization schemes for the 2HDM w.r.t. "three desirable criteria": [A. Freitas, D. Stöckinger, A
 - [A. Freitas, D. Stöckinger, Phys. Rev. D66 (2002) 095014]

- gauge independence
- process independence
- numerical stability (*i.e.* leads to moderate NLO corrections)

measure for the relative size of the NLO corrections:

$$\Delta \Gamma \equiv \frac{\Gamma^{\rm NLO} - \Gamma^{\rm LO}}{\Gamma^{\rm LO}}$$

measure for the relative size of the NLO corrections:

$$\Delta\Gamma \equiv \frac{\Gamma^{\rm NLO} - \Gamma^{\rm LO}}{\Gamma^{\rm LO}}$$

- the relative corrections $\Delta\Gamma$ may become large
 - if the LO width becomes small such that $\Delta\Gamma$ becomes very sensitive on $\Gamma^{
 m NLO}$
 - if vertex corrections, CTs and/or WFRCs are parametrically enhanced
 - due to unsuitable renormalization schemes for some parameters
 - e.g. $\overline{\mathrm{MS}}$: finite parts of \deltalpha,\deltaeta missing for cancellation of large contributions
 - e.g. proc.-dep.: additional potentially large finite parts included in $\deltalpha,\,\deltaeta,\,\delta m_{12}^2$

measure for the relative size of the NLO corrections:

$$\Delta \Gamma \equiv \frac{\Gamma^{\rm NLO} - \Gamma^{\rm LO}}{\Gamma^{\rm LO}}$$

- the relative corrections $\Delta\Gamma$ may become large
 - I if the LO width becomes small such that $\Delta\Gamma$ becomes very sensitive on $\Gamma^{
 m NLO}$
 - if vertex corrections, CTs and/or WFRCs are parametrically enhanced
 - due to unsuitable renormalization schemes for some parameters
 - e.g. $\overline{\mathrm{MS}}$: finite parts of $\delta lpha, \delta eta$ missing for cancellation of large contributions
 - e.g. proc.-dep.: additional potentially large finite parts included in $\deltalpha,\,\deltaeta,\,\delta m_{12}^2$
 - in this talk: "numerical instability" of the renormalization scheme

measure for the relative size of the NLO corrections:

$$\Delta \Gamma \equiv \frac{\Gamma^{\rm NLO} - \Gamma^{\rm LO}}{\Gamma^{\rm LO}}$$

- the relative corrections $\Delta\Gamma$ may become large
 - I if the LO width becomes small such that $\Delta\Gamma$ becomes very sensitive on $\Gamma^{
 m NLO}$
 - if vertex corrections, CTs and/or WFRCs are parametrically enhanced
 - due to **unsuitable renormalization schemes** for some parameters
 - e.g. $\overline{\mathrm{MS}}$: finite parts of $\delta lpha, \delta eta$ missing for cancellation of large contributions
 - e.g. proc.-dep.: additional potentially large finite parts included in $\deltalpha,\,\deltaeta,\,\delta m_{12}^2$
 - in this talk: "numerical instability" of the renormalization scheme

in Higgs-to-Higgs decays in the (N)2HDM, $\Delta\Gamma$ may additionally become large due to certain limits in the parameter space

wrong-sign limit, strong coupling limit

Renormalization: Scalar Mixing Angles (II)

• approach by S. Kanemura *et al.*: connect the definition of α and β with the **inverse propagator matrix** ("KOSY scheme")

[S. Kanemura, Y. Okada, E. Senaha, C. P. Yuan, *Phys. Rev. D* 70 (2004) 115002]

$$\begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}_0 = R_{\theta,0}^T \begin{pmatrix} \widetilde{\phi}_1 \\ \widetilde{\phi}_2 \end{pmatrix}_0 \approx R_{\delta\theta}^T R_{\theta}^T \sqrt{Z_{\widetilde{\phi}}} R_{\theta} R_{\theta}^T \begin{pmatrix} \widetilde{\phi}_1 \\ \widetilde{\phi}_2 \end{pmatrix} \approx \begin{pmatrix} 1 + \frac{\delta Z_{\phi_1 \phi_1}}{2} & \delta C_{\phi_2} + \delta \theta \\ \delta C_{\phi_2} - \delta \theta & 1 + \frac{\delta Z_{\phi_2 \phi_2}}{2} \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}$$

mixing angle counterterms within the standard tadpole scheme:

$$\delta \alpha = \frac{1}{2 (m_H^2 - m_h^2)} \operatorname{Re} \left[\Sigma_{Hh} (m_H^2) + \Sigma_{Hh} (m_h^2) - 2 \delta T_{Hh} \right]$$

$$\delta \beta = -\frac{1}{2m_{H^{\pm}}^2} \operatorname{Re} \left[\Sigma_{G^{\pm}H^{\pm}} (m_{H^{\pm}}^2) + \Sigma_{G^{\pm}H^{\pm}} (0) - 2 \delta T_{G^{\pm}H^{\pm}} \right]$$

Renormalization: Scalar Mixing Angles (II)

• approach by S. Kanemura *et al.*: connect the definition of α and β with the **inverse propagator matrix** ("KOSY scheme")

[S. Kanemura, Y. Okada, E. Senaha, C. P. Yuan, *Phys. Rev. D* 70 (2004) 115002]

$$\begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}_0 = R_{\theta,0}^T \begin{pmatrix} \widetilde{\phi}_1 \\ \widetilde{\phi}_2 \end{pmatrix}_0 \approx R_{\delta\theta}^T R_{\theta}^T \sqrt{Z_{\widetilde{\phi}}} R_{\theta} R_{\theta}^T \begin{pmatrix} \widetilde{\phi}_1 \\ \widetilde{\phi}_2 \end{pmatrix} \approx \begin{pmatrix} 1 + \frac{\delta Z_{\phi_1 \phi_1}}{2} & \delta C_{\phi_2} + \delta \theta \\ \delta C_{\phi_2} - \delta \theta & 1 + \frac{\delta Z_{\phi_2 \phi_2}}{2} \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}$$

mixing angle counterterms within the standard tadpole scheme:

$$\delta \alpha = \frac{1}{2(m_H^2 - m_h^2)} \operatorname{Re} \left[\Sigma_{Hh}(m_H^2) + \Sigma_{Hh}(m_h^2) - 2\delta T_{Hh} \right]$$

$$\delta \beta = -\frac{1}{2m_{H^{\pm}}^2} \operatorname{Re} \left[\Sigma_{G^{\pm}H^{\pm}}(m_{H^{\pm}}^2) + \Sigma_{G^{\pm}H^{\pm}}(0) - 2\delta T_{G^{\pm}H^{\pm}} \right]$$

the KOSY scheme as described above leads to the inclusion of gaugedependent contributions in the partial decay widths [MK, Master's thesis (2016), KIT]

gauge dependences need to be removed

[cf. S. Kanemura, M. Kikuchi, K. Sakurai, K. Yagyu, Phys. Rev. D 96 (2017) 035014]

Renormalization: Scalar Mixing Angles (III)

- gauge-independent "OS approach": use the pinch technique (PT)
- PT-based definition of the scalar mixing angle counterterms: use the pinched scalar self-energies instead of the usual ones
- necessary requirement: use the alternative tadpole scheme

Renormalization: Scalar Mixing Angles (III)

- gauge-independent "OS approach": use the pinch technique (PT)
- PT-based definition of the scalar mixing angle counterterms: use the pinched scalar self-energies instead of the usual ones
- necessary requirement: use the alternative tadpole scheme
- properties of the pinched scheme:
 - **process-independent**, symmetric in the fields
 - manifestly gauge-independent per construction
 - gauge-independent NLO amplitudes
 - numerically stable (depending on the point in parameter space)

proposed solution for renormalizing $\delta lpha\,$ and $\delta eta\,$ in the 2HDM

[MK, R. Lorenz, M. Mühlleitner, R. Santos, H. Ziesche, J. High Energ. Phys. 2016 (2016) 143]

Renormalization: Scalar Mixing Angles (IV)

gauge-independent approach: process-dependent schemes

[A. Freitas, D. Stöckinger, *Phys. Rev.* D66 (2002) 095014;
 R. Santos, A. Barroso, L. Brucher, *Phys. Lett.* B 391 (1997) 429-433]

idea: impose the gauge-invariant condition

 $\Gamma^{\rm LO}_{\phi ff} \equiv \Gamma^{\rm NLO}_{\phi ff}$

for different decays in order to define $\delta \alpha$ and $\delta \beta$

Renormalization: Scalar Mixing Angles (IV)

gauge-independent approach: process-dependent schemes

[A. Freitas, D. Stöckinger, *Phys. Rev.* D66 (2002) 095014;
 R. Santos, A. Barroso, L. Brucher, *Phys. Lett.* B 391 (1997) 429-433]

idea: impose the gauge-invariant condition

 $\Gamma^{\rm LO}_{\phi ff} \equiv \Gamma^{\rm NLO}_{\phi ff}$

for different decays in order to define $\delta \alpha$ and $\delta \beta$

• we consider the following combinations for $\delta \alpha$, $\delta \beta$:

- **proc.-dep. 1**: $A \to \tau \tau$ for $\delta \beta$ and $H \to \tau \tau$ for $\delta \alpha$
- **proc.-dep. 2**: $A \to \tau \tau$ for $\delta \beta$ and $h \to \tau \tau$ for $\delta \alpha$
- **proc.-dep. 3**: $H \to \tau \tau$ and $h \to \tau \tau$ for both $\delta \alpha$, $\delta \beta$

Renormalization: Scalar Mixing Angles (IV)

gauge-independent approach: process-dependent schemes

[A. Freitas, D. Stöckinger, *Phys. Rev.* D66 (2002) 095014;
 R. Santos, A. Barroso, L. Brucher, *Phys. Lett.* B 391 (1997) 429-433]

idea: impose the gauge-invariant condition

 $\Gamma^{\rm LO}_{\phi ff} \equiv \Gamma^{\rm NLO}_{\phi ff}$

for different decays in order to define $\delta \alpha$ and $\delta \beta$

• we consider the following combinations for $\delta \alpha$, $\delta \beta$:

- **proc.-dep. 1**: $A \to \tau \tau$ for $\delta \beta$ and $H \to \tau \tau$ for $\delta \alpha$
- **proc.-dep. 2**: $A \to \tau \tau$ for $\delta \beta$ and $h \to \tau \tau$ for $\delta \alpha$
- **proc.-dep. 3**: $H \to \tau \tau$ and $h \to \tau \tau$ for both $\delta \alpha$, $\delta \beta$

properties of process-dependent schemes:

- process-dependent per construction
- gauge-independent

potentially numerically unstable over large parameter ranges

Renormalization: Scalar Mixing Angles (V)

generalization to the N2HDM is straightforward

Renormalization: Scalar Mixing Angles (V)

- generalization to the N2HDM is straightforward
- the CP-odd and charged mixing angle β is **analogously** renormalized

Renormalization: Scalar Mixing Angles (V)

- generalization to the N2HDM is straightforward
- the CP-odd and charged mixing angle β is **analogously** renormalized
- for the three CP-even mixing angles α₁, α₂, α₃, we consider several different schemes:
 - $\overline{\mathrm{MS}}$ scheme
 - adapted KOSY schemes
 - PT-based schemes

Implementation: 2HDECAY (I)

Implementation: 2HDECAY (I)

2HDECAY: "2HDM HDECAY"

A program for the calculation One-Loop Electroweak Corrections to Higgs Decays in the Two-Higgs-Doublet Model Including State-of-the-Art QCD Corrections

[MK, M. Mühlleitner, M. Spira, Computer Physics Communications 246 (2020) 106852]

https://github.com/marcel-krause/2HDECAY

21.11.2019 - ITP Research Seminar

Implementation: 2HDECAY (II)

17 renormalization schemes are implemented in **2HDECAY**:

Input ID	Tadpole scheme	$\delta lpha$	δeta	Label
1	standard	KOSY	KOSY (odd)	$\mathrm{KOSY}^{o}(\mathrm{std})$
2	standard	KOSY	KOSY (charged)	$\mathrm{KOSY}^{c}(\mathrm{std})$
3	alternative (FJ)	KOSY	KOSY (odd)	KOSY^{o}
4	alternative (FJ)	KOSY	KOSY (charged)	KOSY^{c}
5	alternative (FJ)	p_* -pinched	p_* -pinched (odd)	\mathbf{p}^o_*
6	alternative (FJ)	p_* -pinched	p_* -pinched (charged)	p^c_*
7	alternative (FJ)	OS-pinched	OS-pinched (odd)	OS^o
8	alternative (FJ)	OS-pinched	OS-pinched (charged)	OS^c
9	alternative (FJ)	procdep. 1	procdep. 1	$\operatorname{proc1}$
10	alternative (FJ)	procdep. 2	procdep. 2	$\mathrm{proc}2$
11	alternative (FJ)	procdep. 3	procdep. 3	$\operatorname{proc3}$
12	alternative (FJ)	physical OS1	physical OS1	OS1
13	alternative (FJ)	physical OS2	physical OS2	OS2
14	alternative (FJ)	physical OS12	physical OS12	OS12
15	alternative (FJ)	rigid symmetry (BFM)	BFMS	BFMS
16	standard	$\overline{\mathrm{MS}}$	$\overline{\mathrm{MS}}$	$\overline{\mathrm{MS}}(\mathrm{std})$
17	alternative (FJ)	$\overline{\mathrm{MS}}$	$\overline{\mathrm{MS}}$	$\overline{\mathrm{MS}}$

[MK, M. Mühlleitner, M. Spira, Computer Physics Communications 246 (2020) 106852]

1 https://github.com/marcel-krause/2HDECAY

21.11.2019 - ITP Research Seminar

Implementation: ewN2HDECAY (I)

Implementation: ewN2HDECAY (I)

ewN2HDECAY: "electroweak N2HDECAY"

A program for the calculation One-Loop Electroweak Corrections to Higgs Decays in the Next-to-Two-Higgs-Doublet Model Including State-of-the-Art QCD Corrections

[MK, M. Mühlleitner, Computer Physics Communications 2019, arXiv:1904.02103]

https://github.com/marcel-krause/ewN2HDECAY

10 renormalization schemes are implemented in ewN2HDECAY:

Input ID	Tadpole scheme	$\delta lpha$	δeta	Label
1	standard	Ad. KOSY	Ad. KOSY (odd)	$\mathrm{KOSY}^{o}(\mathrm{std})$
2	standard	Ad. KOSY	Ad. KOSY (charged)	$\mathrm{KOSY}^{c}(\mathrm{std})$
3	alternative (FJ)	Ad. KOSY	Ad. KOSY (odd)	KOSY^{o}
4	alternative (FJ)	Ad. KOSY	Ad. KOSY (charged)	KOSY^c
5	alternative (FJ)	p_* -pinched	p_* -pinched (odd)	p^o_*
6	alternative (FJ)	p_* -pinched	p_* -pinched (charged)	p^c_*
7	alternative (FJ)	OS-pinched	OS-pinched (odd)	OS^o
8	alternative (FJ)	OS-pinched	OS-pinched (charged)	OS^c
9	standard	$\overline{\mathrm{MS}}$	$\overline{\mathrm{MS}}$	$\overline{\mathrm{MS}}(\mathrm{std})$
10	alternative (FJ)	$\overline{\mathrm{MS}}$	$\overline{\mathrm{MS}}$	$\overline{\mathrm{MS}}$

[MK, M. Mühlleitner, Computer Physics Communications 2019, arXiv:1904.02103]

https://github.com/marcel-krause/ewN2HDECAY

• consider ew. one-loop corrections to the 2HDM process $H \rightarrow h h$

- consider ew. one-loop corrections to the 2HDM process $H \rightarrow h h$
- the SM input parameters are fixed; h corresponds to the SM-like Higgs: $m_h = 125.09 \,\text{GeV}$
- exemplarily, we consider a **type II 2HDM** in the following

- consider ew. one-loop corrections to the 2HDM process $H \rightarrow h h$
- the SM input parameters are fixed; h corresponds to the SM-like Higgs: $m_h = 125.09 \,\text{GeV}$
- exemplarily, we consider a **type II 2HDM** in the following
- keep in mind: the 2HDM contains **a lot of free parameters:** $\{m_H, m_A, m_{H^{\pm}}, m_{12}^2, \tan\beta, \alpha\}$

chosen parameter points respect several experimental and theoretical constraints

• we consider **two separate conditions** for the analysis:

• we consider **two separate conditions** for the analysis:

Condition I: OS threshold for $H \to h h$

 $m_H \ge 2m_h$

most general case for the OS decay

• we consider **two separate conditions** for the analysis:

Condition I: OS threshold for $H \to h h$

 $m_H \ge 2m_h$

Condition II: masses of heavy Higgs bosons are dominated by m_{12}^2 $m_H \ge 2m_h$ and large $m_{\phi_{\text{heavy}}} \approx \frac{m_{12}}{\sqrt{\sin\beta\cos\beta}} \pm 5\%$

 \Longrightarrow decoupling possible, since the couplings λ_i can be small

• we consider **two separate conditions** for the analysis:

Condition I: OS threshold for $H \to h h$

 $m_H \ge 2m_h$

most general case for the OS decay

Condition II: masses of heavy Higgs bosons are dominated by m^2_{12}

 $m_H \ge 2m_h$ and large $m_{\phi_{\text{heavy}}} \approx \frac{m_{12}}{\sqrt{\sin\beta\cos\beta}} \pm 5\%$

 \Longrightarrow decoupling possible, since the couplings λ_i can be small

aim: distinguish large NLO corrections due to the strong coupling regime from numerical instability due to the chosen renormalization scheme

process-dependent scheme: typically huge NLO corrections

pinched schemes: well-behaving for large parameter ranges, but also large NLO corrections possible model numerical instability?

process-dependent scheme: still typically huge NLO corrections

pinched schemes: one well-behaving regime and one regime with large NLO corrections

numerical instability or still strong coupling?

all schemes: mostly large NLO corrections decoupling is not possible in wrong-sign type II 2HDM

108

non-decoupling effects increase NLO corrections

numerical instability of the scheme

PT-based schemes: mostly moderate NLO corrections

numerically stable scheme

Conclusions and Outlook

- renormalization can spoil gauge independence in the (N)2HDM
- a gauge-independent, process-independent and numerically stable scheme for $\delta \alpha$ and $\delta \beta$ worked out for the first time for the (N)2HDM
- NLO corrections to Higgs-to-Higgs decays can become large
 - due to chosen renormalization schemes ("numerical instability")
 - if the LO width becomes very small
 - due to parametrically enhanced contributions from VCs, CTs and WFRCs
 - in certain limits of the (N)2HDM due to non-decoupling effects
- analyses of the NLO corrections performed with (ewN)2HDECAY: several different renormalization schemes included
- for correct-sign decoupling: moderate corrections for certain schemes

numerically stable schemes

111

dedicated phenomenological studies in the very near future: stay tuned!

So long, and thanks for all the fish!

[source: https://xkcd.com/1437]

Backup slides

Renormalization: On-Shell Conditions (I)

- consider scalar field doublet (ϕ_1, ϕ_2)
- wave-function renormalization constants (WFRCs):

$$\begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}_0 = \sqrt{Z_\phi} \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \approx \left(1_{2 \times 2} + \frac{\delta Z_\phi}{2} \right) \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \quad , \quad \frac{\delta Z_\phi}{2} = \begin{pmatrix} \frac{\delta Z_{\phi_1 \phi_1}}{2} & \frac{\delta Z_{\phi_1 \phi_2}}{2} \\ \frac{\delta Z_{\phi_2 \phi_1}}{2} & \frac{\delta Z_{\phi_2 \phi_2}}{2} \end{pmatrix}$$

two-point correlation function for the doublet with momentum p^2 :

21.11.2019 - ITP Research Seminar

on-shell conditions:

- **mixing** of fields **vanishes** for $p^2 = m_{\phi_i}^2$
- squared masses $m_{\phi_i}^2$ are the real parts of the **poles** of the propagator
- **field normalization**: residue of the propagator at its pole equals i

fixation of **diagonal** mass counterterms:

 $\operatorname{Re}\left[\delta D^2_{\phi_1\phi_1}\right] = \operatorname{Re}\left[\Sigma_{\phi_1\phi_1}(m^2_{\phi_1})\right] \quad , \qquad \operatorname{Re}\left[\delta D^2_{\phi_2\phi_2}\right] = \operatorname{Re}\left[\Sigma_{\phi_2\phi_2}(m^2_{\phi_2})\right]$

fixation of WFRCs:

 $\delta Z_{\phi_1 \phi_1} = -\operatorname{Re} \left[\frac{\partial \Sigma_{\phi_1 \phi_1}(p^2)}{\partial p^2} \right]_{p^2 = m_{\phi_1}^2} , \quad \delta Z_{\phi_2 \phi_2} = -\operatorname{Re} \left[\frac{\partial \Sigma_{\phi_2 \phi_2}(p^2)}{\partial p^2} \right]_{p^2 = m_{\phi_2}^2}$ $\delta Z_{\phi_1 \phi_2} = \frac{2}{m_{\phi_1}^2 - m_{\phi_2}^2} \operatorname{Re} \left[\Sigma_{\phi_1 \phi_2}(m_{\phi_2}^2) - \delta D_{\phi_1 \phi_2}^2 \right] , \quad \delta Z_{\phi_2 \phi_1} = \frac{2}{m_{\phi_2}^2 - m_{\phi_1}^2} \operatorname{Re} \left[\Sigma_{\phi_1 \phi_2}(m_{\phi_1}^2) - \delta D_{\phi_1 \phi_2}^2 \right]$

• the specific form of the $\delta D^2_{\phi_i\phi_j}$ depends on the tadpole scheme

Renormalization: Alternative Tadpole Scheme (III)

- technical note: distinguish between tadpole renormalization and renormalization of the other physical parameters
- at one-loop, the proper renormalized VEV is given by the tree-level VEV:

$$v^{\mathrm{ren}}|_{\mathrm{FJ}} = v^{\mathrm{tree}} = \left. \frac{2m_W}{g} \right|^{\mathrm{tre}}$$

- the effect of the shifts δv_i were already applied
- at NLO, the other tree-level parameters m_W and g still have to be renormalized:

$$\frac{2m_W}{g}\Big|^{\text{tree}} \to \frac{2m_W}{g}\Big|_{\text{FJ}}^{\text{ren}} + \underbrace{\frac{2m_W}{g}\left(\frac{\delta m_W^2}{2m_W^2} - \frac{\delta g}{g}\right)\Big|_{\text{FJ}}}_{\equiv \Delta v}$$

the quantity Δv combines the effect of the CTs of m_W and g

Renormalization: Alternative Tadpole Scheme (IV)

- generalization to more complicated Higgs models, e.g. the singlet extensions of the SM ("HSM") or N2HDM is straightforward
- the shifts δv_i (including δv_S) are connected to the tadpole diagrams
- **a**fter performing the shifts, Δv_S still has to be renormalized
- in the standard tadpole scheme: Δv_S is protected from UV divergences [M. Sperling, D. Stöckinger, A. Voigt, J. High Energ. Phys. 1307 (2013) 132; F. Bojarski, G. Chalons, D. Lopez-Val, T. Robens, J. High Energ. Phys. 2016 (2016) 147]

• freedom of choice: set $\Delta v_S = 0$

in the alternative tadpole scheme: Δv_S becomes UV-divergent [MK, D. Lopez-Val, M. M. Mühlleitner, R. Santos, J. High Energ. Phys. 2017 (2017) 77]

> renormalization through $\overline{\mathrm{MS}}$, process-dependent scheme, ...

Renormalization: Scalar Mixing Angles (V)

- gauge-independent "physical OS approach": use S matrix elements through a process [A. Denner, S. Dittmaier, J.-N. Lang, JHEP 2018 (2018) 104]
- idea: introduce two right-handed fermion singlets *ν_{iR}* with additional Z₂ symmetries to prevent generation mixing
 ➡ massive neutrinos with Yukawa couplings *y_{ν_i}*
- renormalization of $\delta \alpha$ and $\delta \beta$ through requirement that ratios of tree-level and one-loop S matrix elements are equivalent, *e.g.*: $\frac{\mathcal{A}_{1}^{H\nu_{i}\nu_{i}}}{\mathcal{A}_{1}^{h\nu_{i}\nu_{i}}} \equiv \frac{\mathcal{A}_{0}^{H\nu_{i}\nu_{i}}}{\mathcal{A}_{0}^{h\nu_{i}\nu_{i}}} \quad (i = 1, 2)$
- after renormalization: **recover the 2HDM** by decoupling the singlets
- properties of the "physical OS approach":

- CTs are defined purely through gauge-independent S matrix elements
 manifestly gauge-independent per construction
- **numerically stable** (depending on the point in parameter space)

Pinch Technique: Introduction (I)

we consider a **fermion scattering process** at one-loop QCD:

 $\mathcal{A}_{\text{full}}(s, t, m_1, m_2) = \mathcal{A}_{\text{box}}(s, t, m_1, m_2; \xi) + \mathcal{A}_{\text{tri}}(t, m_1, m_2; \xi) + \mathcal{A}_{\text{self}}(t; \xi)$

the gauge dependences have to cancel within the individual topologies
 → rearrangement of the contributions is always possible
 → rearrangement shows that all gauge dependences have self-energy-like or triangle-like form

$$\mathcal{A}_{\text{full}}(s,t,m_1,m_2) = \tilde{\mathcal{A}}_{\text{box}}(s,t,m_1,m_2) + \tilde{\mathcal{A}}_{\text{tri}}(t,m_1,m_2) + \tilde{\mathcal{A}}_{\text{self}}(t) \quad ,$$

$$\mathcal{A}_{\mathrm{tri}}(t,m_1,m_2;\xi) \rightarrow \tilde{\mathcal{A}}_{\mathrm{tri}}(t,m_1,m_2) + f_{\mathrm{self}}(t;\xi)$$
, etc.

Pinch Technique: Introduction (II)

- determination of the gauge-dependent contributions: "pinching"
- main idea: trigger the elementary Ward identity for the loop momentum

$$k = (k + p - m) - (p - m) = S^{-1}(k + p) - S^{-1}(p)$$
inverse fermion
right expression: vanishes OS between spinors
propagators

left expression: cancels ("pinches out") an internal fermion propagator

Pinch Technique: Results (I)

- (almost) all pinch contributions are proportional to (1ξ)
- the non-pinched contributions are **equivalent** to diagrams calculated in **Feynman-'t Hooft gauge**, *i.e.* for $\xi \equiv 1$

the pinch contributions are self-energy like, *i.e.* functions of only t
 reallocation of pinch contributions to the gluon self-energy possible

Pinch Technique: Results (II)

sum of all pinch contributions \rightarrow cancelation of gauge dependences $g_{\rm s}^2 t(1-\xi)^2 \int_k \frac{k^{\mu}k^{\nu}}{k^4(k+q)^4} \quad g_{\rm s}^2 t(1-\xi) \int_k \frac{k^{\mu}k^{\nu}}{k^4(k+q)^2} \quad g_{\rm s}^2 t(1-\xi) \int_k \frac{g^{\mu\nu}}{k^2(k+q)^4} \quad g_{\rm s}^2 t(1-\xi) \int_k \frac{g^{\mu\nu}}{k^4(k+q)^4} \int_k \frac{g^{\mu\nu}}{k^4(k$ $(q^2 \equiv t)$ $t\frac{C_{\rm A}}{2}$ $i\Sigma_{\rm box}^{\mu\nu}$ 0 $-tC_{\Lambda}$ 0 $i\Sigma_{\rm tri1}^{\mu\nu}$ $C_{\rm A} - 2C_{\rm f}$ 0 0 0 $i\Sigma_{\rm tri2}^{\mu\nu}$ $-tC_{\rm A}$ $2C_{\rm A}$ $2tC_{\rm A}$ $-2C_{\rm A}$ $i\Sigma_{\rm self,q}^{\mu\nu}$ 0 $2C_{\rm f}$ 0 0 $i\Sigma_{\text{self,g}}^{\mu\nu}$ $t\frac{C_{\rm A}}{2}$ $-2C_{\rm A}$ $C_{\rm A}$ $-tC_{\rm A}$ Sum 0 0 0 0

 C_A, C_f : Casimir operators

main results from the application of the pinch technique:

- demonstration of intricate cancelation of gauge dependences
- cancelation is not accidental, but follows from Ward identities

Gauge-Independent Self-Energies via PT

all pinch contributions are self-energy-like
 reallocate pinch contributions to the gluon self-energy

- the pinched self-energy is equivalent to the one evaluated for $\xi \equiv 1$ after the cancelation of all gauge dependences
 - → Feynman-'t Hooft-gauge is a **special gauge choice**
- **interesting properties** of the pinched gluon self-energy:
 - analogy to the gluon self-energy given by the Background Field Method
 - uniquely defined by the pinch technique framework
 - manifestly **gauge-independent** → allows for gauge-independent **counterterms**
 - obeys QED-like Ward identities instead of complicated Slavnov-Taylor identities

[for more details cf. e.g. D. Binosi, J. Papavassiliou, Phys. Rep. 479 (2009) 1]

124

 p_1

 (r_1, r_2)

 (p_1, p_2)

 r_2

 p_2

1gau

 $\frac{-ig_{\beta\nu}}{q^2}$

 $i\Gamma$

Applications of the Pinch Technique

- the pinch technique can be applied to e.g. the SM, MSSM, (N)2HDM, ...
- for consistency: tadpole diagrams have to be taken into account
 ialternative tadpole scheme" is needed
- applications of the pinched self-energies:
 - definition of gauge-independent counterterms
 - general analysis of gauge dependence cancelations [D. Binosi, J. Papavassiliou, Phys. Rev. D65 (2002) 085003]
 - generalization to all orders [D. Binosi, J. Phys. G30 (2004) 1021]
 - construction of QED-like Ward identities for e.g. QCD
 - gauge-independent definition of electroweak parameters
 - consistent resummation for resonant transition amplitudes
 - extraction of gauge-independent part of BFM self-energies
- [D. Binosi, J. Papavassiliou,
 Phys. Rep. **479** (2009) 1;
 J. Papavassiliou, Phys.
 Rev. **D50** (1994) 5958]

- parameters are converted from reference scheme pOS^o to all others
 - relative difference over large range of m_H between -2% and 6%

moderate uncertainty for considered parameter point and decay

Iarge NLO corrections for both the $\overline{\mathrm{MS}}$ and proc.-dep. scheme for m_{12}^2

both numerical instability and strong coupling at work