

Primordial Nucleosynthesis -The Origin of the Lightest Elements

Marcel Krause

Institute for Theoretical Physics (ITP), Karlsruhe Institute of Technology (KIT)

Institute for Theoretical Physics

May 13, 2019

- The Big Bang Theory in a Nutshell
- Primordial Nucleosynthesis Overview
- Primordial Nucleosynthesis Processes
- Measurements of the Abundance of the Lightest Elements
- Results of the Measurements

geometrization of gravity:

geometrization of gravity:

Einstein Field Equations

$$\underbrace{R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu}}_{G_{\mu\nu}} = \frac{8\pi G}{c^4}T_{\mu\nu}$$

- $R_{\mu\nu}$: Ricci tensor (curvature of space-time)
- R : Ricci scalar (curvature of space-time)
- $g_{\mu\nu}$: metric tensor (metric of space-time)
- $G_{\mu\nu}$: Einstein tensor (manifold)
- $T_{\mu\nu}$: energy-momentum tensor ("source" of the curvature of space-time)
- Λ : cosmological constant (vacuum state \rightarrow dark energy)
- G : gravitational constant
- c : speed of light

3

important parameters for an expanding universe:

scale factor

$$a \equiv a(t) \equiv \frac{d(t)}{d_0} \longleftarrow$$

proper (physical) distance co-moving (reference) distance

(per definition, today we have a = 1)

important parameters for an expanding universe:

scale factor

$$a \equiv a(t) \equiv \frac{d(t)}{d_0} \longleftarrow$$

proper (physical) distance co-moving (reference) distance

(per definition, today we have a = 1)

Hubble parameter

$$H \equiv H(t) \equiv \frac{\dot{a}(t)}{a(t)}$$
 today: $H_0 \approx [67, 74] \frac{\mathrm{km}}{\mathrm{s} \cdot \mathrm{Mpc}}$

important parameters for an expanding universe:

scale factor

$$a \equiv a(t) \equiv \frac{d(t)}{d_0}$$

proper (physical) distance co-moving (reference) distance

(per definition, today we have a = 1)

Hubble parameter

$$H \equiv H(t) \equiv \frac{\dot{a}(t)}{a(t)}$$

normalized spatial curvature parameter

$$\frac{k}{a^2} \equiv \begin{cases} +1, & \text{closed 3-sphere} \\ 0, & \text{flat universe} \\ -1, & \text{open 3-hyperboloid} \end{cases}$$

today:
$$H_0 \approx [67, 74] \frac{\text{km}}{\text{s} \cdot \text{Mpc}}$$

• critical density for $\Lambda = k = 0$:

$$\rho_c = \frac{3H^2}{8\pi G} \qquad ($$

(today roughly 5 hydrogen atoms per m³)

• critical density for $\Lambda = k = 0$:

 $\rho_c = \frac{3H^2}{8\pi G}$

(today roughly 5 hydrogen atoms per m³)

evolution of the universe:

Parametrized Friedmann Lemaître Equations

$$\frac{H^2}{H_0^2} = \Omega_R a^{-4} + \Omega_M a^{-3} + \Omega_k a^{-2} + \Omega_\Lambda$$

Ω_i: energy densities of radiation (R), matter (M), curvature (k) and the vacuum (Λ)

critical density for $\Lambda = k = 0$:

 $\rho_c = \frac{3H^2}{8\pi G}$ (today roughly 5 hydrogen atoms per m³)

evolution of the universe:

Parametrized Friedmann Lemaître Equations

$$\frac{H^2}{H_0^2} = \Omega_R a^{-4} + \Omega_M a^{-3} + \Omega_k a^{-2} + \Omega_\Lambda$$

 Ω_i : energy densities of radiation (R), matter (M), curvature (k) and the vacuum (Λ)

primordial nucleosynthesis!

9

also known as Big Bang nucleosynthesis (BBN)

- also known as Big Bang nucleosynthesis (BBN)
- explains the creation of the lightest elements (H, d, ³He, ⁴He, ⁷Li) directly after the Big Bang
- **temperature** of the universe: between 10¹¹ K and 10⁹ K

- also known as Big Bang nucleosynthesis (BBN)
- explains the creation of the lightest elements (H, d, ³He, ⁴He, ⁷Li) directly after the Big Bang
- **temperature** of the universe: between 10¹¹ K and 10⁹ K
- age of the universe: between 0.01 s and 3 min after the Big Bang
 famous "first three minutes" of the universe (cf. Weinberg etc.)

May 13, 2019

M. Krause: Primordial Nucleosynthesis - The Origin of the Lightest Elements

- BBN is strongly supported by the Big Bang theory
- explanation of the origin of the lightest elements

origin of the **lightest elements** (H, d, ³He, ⁴He, ⁷Li)

origin of the lightest elements (H, d, ³He, ⁴He, ⁷Li)

- BBN is strongly supported by the Big Bang theory
- explanation of the origin of the lightest elements
- verifiable through experimental observations

18

Primordial Nucleosynthesis - Motivations

- BBN is strongly supported by the Big Bang theory
- explanation of the origin of the lightest elements
- verifiable through experimental observations
- determination of the baryonic energy density
- determination of the ratio of baryons and photons

Ratio of Baryons and Photons

$$\eta \equiv \frac{n_{\rm baryon}}{n_{\rm photon}} \approx \mathcal{O}(10^{-10})$$

Stage 0: Quark Gluon Plasma

$$t = 10^{-6} \,\mathrm{s}$$
, $T = 10^{12} \,\mathrm{K}$, $E = 100 \,\mathrm{MeV}$

quasi-free quarks and gluons (free of confinement)

- equilibrium state
- terminates in hadronization

formation of protons and neutrons

Stage I: Thermodynamic Equilibrium

$$t = 10^{-2} \,\mathrm{s}$$
, $T = 10^{11} \,\mathrm{K}$, $E = 10 \,\mathrm{MeV}$

dominant particles: p, n, ν, e^{\pm}

equilibrium state between protons and neutrons

continuous transformation via the weak interaction

$$p + e^{-} \leftrightarrow n + \nu_{e}$$

$$p + \bar{\nu}_{e} \leftrightarrow n + e^{+}$$

$$n \leftrightarrow p + e^{-} + \bar{\nu}_{e}$$

20

Stage I: Thermodynamic Equilibrium

$$t = 10^{-2} \,\mathrm{s}$$
, $T = 10^{11} \,\mathrm{K}$, $E = 10 \,\mathrm{MeV}$

• $m_n > m_p$ \implies difference in rest energy $\Delta mc^2 \approx 1.293 \,\mathrm{MeV}$

21

Stage I: Thermodynamic Equilibrium

$$t = 10^{-2} \,\mathrm{s}$$
, $T = 10^{11} \,\mathrm{K}$, $E = 10 \,\mathrm{MeV}$

• $m_n > m_p$ difference in rest energy $\Delta mc^2 \approx 1.293 \,\mathrm{MeV}$

proton and neutron are two states of one isospin doublet

Boltzmann Distribution in Thermal Equilibrium

$$\frac{n}{p} = \exp\left(-\frac{\Delta mc^2}{k_B T}\right) \approx \exp\left(-\frac{1.293 \,\mathrm{MeV}}{k_B T}\right)$$

*k*_B: Boltzmann constant

connection between neutron-proton ratio and statistical physics

May 13, 2019

Stage I: Thermodynamic Equilibrium

$$t = 10^{-2} \,\mathrm{s}$$
, $T = 10^{11} \,\mathrm{K}$, $E = 10 \,\mathrm{MeV}$

reaction rate of the weak processes:

$$\Gamma(p + e^- \leftrightarrow \nu_e + n) \approx G_F^2 T^5$$

 $(G_F: Fermi constant)$

Stage I: Thermodynamic Equilibrium

$$t = 10^{-2} \,\mathrm{s}$$
, $T = 10^{11} \,\mathrm{K}$, $E = 10 \,\mathrm{MeV}$

reaction rate of the weak processes:

$$\Gamma(p + e^- \leftrightarrow \nu_e + n) \approx G_F^2 T^5$$

 $(G_F: Fermi constant)$

expansion rate of the universe:

 $H \propto T^2$

Stage I: Thermodynamic Equilibrium

$$t = 10^{-2} \,\mathrm{s}$$
, $T = 10^{11} \,\mathrm{K}$, $E = 10 \,\mathrm{MeV}$

reaction rate of the weak processes:

$$\Gamma(p + e^- \leftrightarrow \nu_e + n) \approx G_F^2 T^5$$

 $(G_F: Fermi constant)$

expansion rate of the universe:

 $H \propto T^2$

ratio of reaction and expansion rates:

$$\frac{\Gamma}{H} \approx \left(\frac{T}{0.8 \,\mathrm{MeV}}\right)^3$$

weak processes freeze out at roughly $T \approx 0.8 \,\mathrm{MeV}$

neutron-proton ratio stabilizes and the equilibrium is broken

25

M. Krause: Primordial Nucleosynthesis - The Origin of the Lightest Elements

Stage II: Freeze-Out of the Weak Processes

$$t = 1 \,\mathrm{s}$$
, $T = 10^{10} \,\mathrm{K}$, $E = 1 \,\mathrm{MeV}$

thermodynamic equilibrium between neutrons and protons breaks

$$\begin{array}{rcl} p + e^{-} & \nleftrightarrow & n + \nu_{e} \\ p + \bar{\nu}_{e} & \nleftrightarrow & n + e^{+} \\ & n & \rightarrow & p + e^{-} + \bar{\nu}_{e} \end{array} & \mbox{decay of free neutrons} \end{array}$$

Neutron-Proton Ratio at the Freeze-Out Temperature

$$\frac{n}{p} = \exp\left(-\frac{\Delta mc^2}{k_BT}\right) \approx \frac{1}{6}$$

May 13, 2019

Stage III: Beta Decay of the Free Neutrons

 $t < 1 \min$, $T = 10^{10} \,\mathrm{K} - 10^9 \,\mathrm{K}$, $E = 1 \,\mathrm{MeV} - 0.1 \,\mathrm{MeV}$

mean lifetime of free neutrons: $\tau \approx 14.7 \min$

Decay Process of Free Neutrons

$$n \rightarrow p + e^- + \bar{\nu}_e$$

Stage III: Beta Decay of the Free Neutrons

 $t < 1 \min$, $T = 10^{10} \,\mathrm{K} - 10^9 \,\mathrm{K}$, $E = 1 \,\mathrm{MeV} - 0.1 \,\mathrm{MeV}$

mean lifetime of free neutrons: $\tau \approx 14.7 \min$

Decay Process of Free Neutrons

$$n \rightarrow p + e^- + \bar{\nu}_e$$

no light elements are produced yet

why?

deuterium (d) is the next-to-lightest isotope to be produce

May 13, 2019

- deuterium (d) is the next-to-lightest isotope to be produce
- **binding energy** of deuterium: $E_b \approx 2.2 \,\mathrm{MeV}$
- ratio of photons with the same energy at $T \approx 0.1 \,\mathrm{MeV}$ (high-end tail):

$$\frac{n_{\gamma}(E \ge E_b)}{n_{\gamma,\text{tot}}} = \exp\left(-\frac{E_b(d)}{k_B T}\right) \approx 10^{-10}$$

$\frac{n_{\gamma}(E \ge E_b)}{n_{\gamma,\text{tot}}} = \exp\left(-\frac{E_b(d)}{k_B T}\right) \approx 10^{-10}$

remember: baryon-to-photon ratio is $\eta \approx 10^{-10}$

31

ITP, KIT

Primordial Nucleosynthesis – Four Stages

- deuterium (d) is the next-to-lightest isotope to be produce
- **binding energy** of deuterium: $E_b \approx 2.2 \,\mathrm{MeV}$
- ratio of photons with the same energy at $T \approx 0.1 \,\mathrm{MeV}$ (high-end tail):

for each produced deuteron, one high-energy photon is present

thermal equilibrium between deuteron production and spallation

neither stable deuterium nor the other light elements can be produced yet

stable deuterium is needed for other elements: "deuterium bottleneck"

Stage IV: Primordial Nucleosynthesis

 $t \le 3 \min$, $T = 10^9 \,\mathrm{K}$, $E = 0.1 \,\mathrm{MeV}$

free neutrons continue to decay:

$$n \rightarrow p + e^- + \bar{\nu}_e$$

Neutron-Proton Ratio at the Beginning of BBN

$$\frac{n}{p} \approx \frac{1}{7}$$

0.9

0.8

Primordial Nucleosynthesis – Processes

Production of Deuterons

$$n+p \rightarrow d+\gamma$$

Primordial Nucleosynthesis – Processes

Production of Deuterons

$$n+p \rightarrow d+\gamma$$

$$n+d \rightarrow t+\gamma$$

Primordial Nucleosynthesis – Processes

Production of Deuterons

$$n+p \rightarrow d+\gamma$$

$$n+d \rightarrow t+\gamma$$

Production of Helium Isotopes

$$d + d \iff {}^{3}\mathrm{He} + n$$

$$d + p \iff {}^{3}\mathrm{He} + \gamma$$

$$t + d \iff {}^{4}\mathrm{He} + n$$

36

M. Krause: Primordial Nucleosynthesis - The Origin of the Lightest Elements

all dominant processes terminate in ⁴He

• second most common atom in the universe

all dominant processes terminate in ⁴He

second most common atom in the universe

• we had
$$rac{n}{p}pproxrac{1}{7}$$

Estimate of the Helium Abundance After the BBN

$$Y \equiv \frac{2\frac{n}{p}}{\frac{n}{p}+1} \approx 0.25$$

all dominant processes terminate in ⁴He

second most common atom in the universe

• we had
$$\frac{n}{p} \approx \frac{1}{7}$$

Estimate of the Helium Abundance After the BBN $Y \equiv \frac{2\frac{n}{p}}{\frac{n}{p}+1} \approx 0.25$

approximate abundance of the two lightest stable elements:

75% H, 25% ⁴He

what about heavier elements?

May 13, 2019

what about heavier elements?

production very unlikely:

- no stable elements with mass numbers 5 or 8
- Coulomb wall increases drastically with increasing mass number

47

M. Krause: Primordial Nucleosynthesis - The Origin of the Lightest Elements

48

M. Krause: Primordial Nucleosynthesis - The Origin of the Lightest Elements

prediction of abundance of all light elements during/after the BBN

- confirms the **Big Bang theory**
- determines η and Ω_B
- indicates consistency of the BBN over ten orders of magnitude
- measurements yield the horizontals in the plots
- point(s) of intersection indicate the measured value of η

stellar nucleosynthesis: amount of ⁴He increases compared to the abundance after the BBN

entanglement of primordial and stellar ⁴He production

stellar nucleosynthesis: amount of ⁴He increases compared to the abundance after the BBN

entanglement of primordial and stellar ⁴He production

I idea: search for stars with very low metallicity

Definition of Metallicity metallicity $\equiv \frac{O}{H} \equiv \frac{\text{amount of oxygen}}{\text{amount of hydrogen}}$

prime candidate: "Blue Compact Dwarf Galaxies"

(low metallicity, gas-rich, H-II region)

stellar nucleosynthesis: amount of ⁴He increases compared to the abundance after the BBN

entanglement of primordial and stellar ⁴He production

I idea: search for stars with very low metallicity

Definition of Metallicity

metallicity
$$\equiv \frac{O}{H} \equiv \frac{\text{amount of oxygen}}{\text{amount of hydrogen}}$$

prime candidate: "Blue Compact Dwarf Galaxies" (low metallicity, gas-rich, H-II region)

spectral analysis of the H-II regions reveals the approximate primordial amount of ⁴He

relative amount Y of ⁴He is **higher** in stars with higher metallicity

- relative amount Y of ⁴He is higher in stars with higher metallicity
- measure the He-I recombination line at $\lambda = 587.6 \,\mathrm{nm}$
- spectral analysis yields Y over metallicity O/H

- relative amount Y of ⁴He is **higher** in stars with higher metallicity
- measure the He-I recombination line at $\lambda = 587.6 \,\mathrm{nm}$
- spectral analysis yields Y over metallicity O/H

primordial amount of ⁴He

- theoretical estimate: $Y_{
 m theor} \approx 0.25$
- experimental value (PDG):
 - $Y_{\rm exp} \approx 0.245 \pm 0.003$

no significant deuterium **production** after the BBN

no significant deuterium **production** after the BBN

deuterium is converted in stellar nucleosynthesis processes:

$$p + d \rightarrow {}^{3}\mathrm{He} + \gamma$$

no significant deuterium **production** after the BBN

BBN is the main source of deuterium

deuterium is converted in stellar nucleosynthesis processes:

$$p + d \rightarrow {}^{3}\mathrm{He} + \gamma$$

no significant deuterium **production** after the BBN

BBN is the main source of deuterium

deuterium is converted in stellar nucleosynthesis processes:

$$p + d \rightarrow {}^{3}\mathrm{He} + \gamma$$

measure the primordial d abundance through Lyman-α absorption lines

prime candidates: Quasar Absorption Systems (QAS)

measure the primordial d abundance through
 Lyman-α absorption lines
 prime candidates: Quasar Absorption Systems (QAS)

radiation emitted from quasars travels through interstellar clouds

increasing redshift z with increasing distance from the quasar:

 $\lambda_{\text{Ly-}\alpha} \approx 121.5 \,(1+z) \,\text{nm}$

measure the primordial d abundance through
 Lyman-α absorption lines
 prime candidates: Quasar Absorption Systems (QAS)

radiation emitted from quasars travels through interstellar clouds

increasing redshift z with increasing distance from the quasar:

 $\lambda_{\text{Ly-}\alpha} \approx 121.5 \,(1+z) \,\text{nm}$

the spectrum shows different Ly-α lines due to different redshifts z

the redshift is necessary since optical instruments are not sensitive enough in the UV regime

M. Krause: Primordial Nucleosynthesis – The Origin of the Lightest Elements

76

M. Krause: Primordial Nucleosynthesis - The Origin of the Lightest Elements

consider a **single** absorption line

- consider a single absorption line
- split the flux into the normalized flux of d and H
- ratio yields the relative abundance of d compared to H

- consider a **single** absorption line
- split the flux into the normalized flux of d and H
- ratio yields the relative abundance of d compared to H

caveats:

- due to the dominance of H, the difference in intensities is huge
- the flux at the absorption line of H is practically vanishing

- consider a **single** absorption line
- split the flux into the normalized flux of d and H
- ratio yields the relative abundance of d compared to H

caveats:

- due to the dominance of H, the difference in intensities is huge
- the flux at the absorption line of H is practically vanishing
- consider a lot of different Ly-α lines from **different sources**

M. Krause: Primordial Nucleosynthesis - The Origin of the Lightest Elements

consider a lot of different Ly-α lines from different sources

consider a lot of different Ly-α lines from different sources

- the Ly- α lines for d and H are close to each other: $\Delta \lambda_{Ly-\alpha} \approx 34 \, pm$
- Doppler shift of the Ly-α lines through rotation of the clouds reduces the resolution of the Ly-α forest
- quasars are required to be at a suitable distance in order to avoid overlaps of red-shifted Ly-α lines from d and H
- many quasars yield results with huge standard deviations

many quasars yield results with huge standard deviations

only **10** measurements are suitable for the current best-fit analysis

 $\frac{d}{\mathrm{H}}\big|_{\mathrm{exp}} \approx (2.569 \pm 0.027) \cdot 10^{-5}$

Measurements of ³He

³He is constantly produced and converted in stellar nucleosynthesis processes

Measurements of ³He

- ³He is constantly produced and converted in stellar nucleosynthesis processes
- the only available measurements of the ³He abundance stem from
 - regions within the solar system
 - regions with very high metallicity

not suitable for determining the primordial abundance of ³He

Measurements of ³He

- ³He is constantly produced and converted in stellar nucleosynthesis processes
- the only available measurements of the ³He abundance stem from
 - regions within the solar system
 - regions with very high metallicity

not suitable for determining the primordial abundance of ³He

distinguishing ³He and ⁴He is technically very difficult

abundance of ³He is **not considered a suitable observable** for the analysis of the BBN

most suitable objects for measuring ⁷Li:

population II stars (very old, low metallicity, thin convection layer)

most suitable objects for measuring ⁷Li: population II stars (very old, low metallicity, thin convection layer)

spectroscopy of the stellar atmosphere:

⁷Li resonance doublets at $\lambda \approx 670.7 \,\mathrm{nm}$

observation: "linear" dependence between ⁷Li and Fe abundance

extrapolation yields the primordial ⁷Li abundance

Caveat for the measurements: ⁷Li is converted for $T \ge 2.5 \cdot 10^6 \,\mathrm{K}$

Lithium Burning		
$^{1}\mathrm{H}+^{7}\mathrm{Li}$ –	→ ⁸ Be	
⁸ Be -	\rightarrow ⁴ He + ⁴]	He

expected:

weak

convection

6000

caveat for the measurements: ⁷Li is converted for $T \ge 2.5 \cdot 10^6$ K

Caveat for the measurements: ⁷Li is converted for $T \ge 2.5 \cdot 10^6 \,\mathrm{K}$

conversion dominantly happens in the convection layer of the star

consider population II stars with weak surface convection

experimental value (PDG):

 $\frac{{}^{7}\mathrm{Li}}{\mathrm{H}}\Big|_{\mathrm{exp}} \approx (1.6 \pm 0.3) \cdot 10^{-10}$

- uncertainties in the measurements are very high
- experimental results are at odds with predictions from BBN

"cosmological lithium problem"

the cosmological lithium problem is unsolved as of today

May 13, 2019

- the cosmological lithium problem is unsolved as of today
- possible explanations for the "lithium gap" within the Standard Model (SM) are inconclusive [A. Coc et al JCAP10(2014)050, arXiv:1403.6694 (astro-ph.CO)]

portal for beyond the SM (BSM) physics

- the cosmological lithium problem is unsolved as of today
- possible explanations for the "lithium gap" within the Standard Model (SM) are inconclusive [A. Coc et al JCAP10(2014)050, arXiv:1403.6694 (astro-ph.CO)]

- portal for beyond the SM (BSM) physics
- BSM explanations for the lithium gap are also inconclusive

[C. A. Bertulani et al EPJ Web of Conferences 184, 01002 (2018), arXiv:1802.03469 (nulc-th)]

remains an open problem to be solved

Combination of the Results

- experimental best fit (PDG): $5.8 \cdot 10^{-10} \le \eta_{exp} \le 6.6 \cdot 10^{-10}$ (95% CL)
- with η , also the **baryonic energy** density Ω_B is determined

Determination of Ω_B – Method 1 via BBN

photon density at $T = 2.725 \,\mathrm{K}$ from **black body radiation**:

 $\rho_{\gamma} \approx 4.11 \cdot 10^8 \, m^{-3}$

Determination of Ω_B – Method 1 via BBN

photon density at $T = 2.725 \,\mathrm{K}$ from **black body radiation**:

 $\rho_{\gamma} \approx 4.11 \cdot 10^8 \, m^{-3}$

the baryonic energy density can now be calculated:

$$\Omega_B h^2 = \frac{m_p c^2 \eta_{\exp} \rho_{\gamma} h^2}{\rho_c} \approx 0.02 \qquad \qquad \text{reduced Hubble constant:} \\ h \equiv \frac{H_0}{100 \,\text{km s}^{-1} \,\text{Mpc}^{-1}}$$

Determination of Ω_B – Method 1 via BBN

photon density at $T = 2.725 \,\mathrm{K}$ from **black body radiation**:

 $\rho_{\gamma} \approx 4.11 \cdot 10^8 \, m^{-3}$

the baryonic energy density can now be calculated:

 $\Omega_B h^2 = \frac{m_p c^2 \eta_{\exp} \rho_{\gamma} h^2}{\rho_c} \approx 0.02 \qquad \qquad \text{reduced Hubble constant:} \\ h \equiv \frac{H_0}{100 \, \text{km s}^{-1} \, \text{Mpc}^{-1}}$

current best-fit value (PDG) at 95% CL:

 $0.021 \le \Omega_B h^2 \le 0.0245$

baryons account for roughly **4% to 5%** of the **total energy density** of the universe

Determination of Ω_B – Method 2 via CMB

measurements of the Cosmic Microwave Background (CMB) through Planck 2015 data directly yield:

 $\Omega_B h^2 = 0.0223 \pm 0.0002$

Determination of Ω_B – Method 2 via CMB

measurements of the Cosmic Microwave Background (CMB) through Planck 2015 data directly yield:

 $\Omega_B h^2 = 0.0223 \pm 0.0002$

from this, the **baryon-photon ratio** is calculated:

 $\eta_{\rm CMB} = (6.09 \pm 0.06) \cdot 10^{-10}$

the CMB yields an **independent cross-check** of the results gained by analyzing the BBN

good agreement between the BBN and the CMB results

Combination of the Results

- experimental value through BBN: $0.021 \le \Omega_B h^2 \le 0.0245$
- experimental value through CMB: $\Omega_B h^2 = 0.0223 \pm 0.0002$
 - BBN and CMB results

Hints of Dark Matter

Hints of Dark Matter

on the other hand, measuring the full matter density yields:

 $\Omega_M h^2 \approx 0.14$

most of the matter content of the universe is non-baryonic "dark" matter

Hints of Dark Matter

Conclusion

- the BBN describes the first three minutes of the universe
- the relative abundance of the lightest elements is not arbitrary but can be calculated
- theoretical predictions gained by the BBN are consistent over ten orders of magnitude
- through spectral observations, the baryonic matter density can be measured in the framework of the BBN
- independent measurements through the CMB provide a cross-check of the results gained by the BBN → excellent agreement
- the measured baryonic matter density is a hint towards **dark matter**
- open questions with respect to the cosmological lithium problem (portal to BSM physics?)

Thanks!

May 13, 2019

M. Krause: Primordial Nucleosynthesis - The Origin of the Lightest Elements
Figure References

- https://cdn-images-1.medium.com/max/1000/1*0Rh6Fxy_B4rHxdjpblwFFw.jpeg
- https://upload.wikimedia.org/wikipedia/commons/9/98/End_of_universe.jpg
- https://web.njit.edu/~gary/202/assets/fig2202.jpg
- https://en.wikipedia.org/wiki/Big_Bang_nucleosynthesis#/media/File:Nucleosynthesis_periodic_table.svg
- https://simple.wikipedia.org/wiki/lsotope#/media/File:Blausen_0530_HydrogenIsotopes.png
- https://www.researchgate.net/figure/The-n-p-ratio-as-a-function-of-comoving-temperature-parameter-Tcm-in-the-third-scenario_fig3_305186106
- https://de.wikipedia.org/wiki/Kernfusion#/media/File:Deuterium-tritium_fusion.svg
- https://www.researchgate.net/figure/Atomic-particles-can-overcome-the-Coulomb-barrier-electrostaticrepulsion-at-much_fig1_282394950
- https://en.wikipedia.org/wiki/Stellar_nucleosynthesis#/media/File:FusionintheSun.svg
- https://wmap.gsfc.nasa.gov/media/121236/121236_NewPieCharts720.png
- https://i0.wp.com/thecuriousjalebi.com/wpcontent/uploads/2018/10/5dc15a58073122dfbb1db83934e49fdc.jpg?ssl=1

Back-up slides

