

Corrections to 2HDM Higgs Decays with 2HDECAY

Marcel Krause

Institute for Theoretical Physics (ITP), Karlsruhe Institute of Technology (KIT)

[MK, M. M. Mühlleitner, M. Spira, in preparation, arxiv:18MM.XXXXX]

GK-Workshop 2018 September 14, 2018

- Motivation
- Principle of Gauge Invariance
- Introduction to the 2HDM
- Automated 1-Loop Calculations with 2HDECAY
- Numerical Results

Motivation (I): Two-Higgs-Doublet Model

- 2HDM: one of the simplest extensions of the SM
 - dark matter candidate (Inert Doublet Model)
 - source of CP violation
 - extended scalar sector
 - renormalizable

Motivation (I): Two-Higgs-Doublet Model

- 2HDM: one of the simplest extensions of the SM
 - dark matter candidate (Inert Doublet Model)
 - source of CP violation
 - extended scalar sector
 - renormalizable
- renormalization of the two scalar mixing angles in the 2HDM is non-trivial
- previously existing schemes are either numerically unstable, processdependent or gauge-dependent
- search for a suitable renormalization scheme of the scalar mixing angles
 - full electroweak NLO corrections to all decays within the 2HDM

Motivation (II): Electroweak @1-Loop

high-precision predictions for branching ratios in BSM models

Motivation (II): Electroweak @1-Loop

- high-precision predictions for branching ratios in BSM models
- state-of-the-art code for branching ratios of Higgs decays in the 2HDM:
 HDECAY
 - off-shell decay modes for final-state massive vector bosons / heavy quarks
 - lacktriangle loop-induced decays to final-state gluon/photon pairs and $Z\gamma$
 - QCD corrections to final-state quark pairs
- electroweak corrections at one-loop are still missing

Motivation (II): Electroweak @1-Loop

- high-precision predictions for branching ratios in BSM models
- state-of-the-art code for branching ratios of Higgs decays in the 2HDM:
 HDECAY
 - off-shell decay modes for final-state massive vector bosons / heavy quarks
 - lacktriangle loop-induced decays to final-state gluon/photon pairs and $Z\gamma$
 - QCD corrections to final-state quark pairs
- electroweak corrections at one-loop are still missing
- interesting theoretical studies with one-loop electroweak corrections:
 - differences w.r.t. MSSM one-loop corrections (integrate out SUSY masses)
 - 2HDM as effective theory for the MSSM with heavy sparticles
 - studies on renormalization scheme dependence (estimate of theoretical errors due to missing higher orders)
 - phenomenologically interesting limits (decoupling, alignment, wrong-sign, ...)

lacksquare consider classical electrodynamics ("Theo C"): $ec{E}$ and $ec{B}$ fields

$$\vec{E} = -\nabla \Phi - \frac{\partial \vec{A}}{\partial t} , \quad \vec{B} = \nabla \times \vec{A}$$

 Φ : scalar potential

 \vec{A} : vector potential

lacksquare consider classical electrodynamics ("Theo C"): $ec{E}$ and $ec{B}$ fields

$$\vec{E} = -\nabla \Phi - \frac{\partial \vec{A}}{\partial t} \; , \quad \vec{B} = \nabla \times \vec{A}$$

 Φ : scalar potential

 $ec{A}$: vector potential

fields are invariant under simultaneous gauge transformations

$$\Phi \longrightarrow \Phi - \frac{\partial \Lambda}{\partial t} , \quad \vec{A} \longrightarrow \vec{A} + \nabla \Lambda$$

 Λ : arbitrary field

Maxwell's equations are invariant as well

lacksquare consider classical electrodynamics ("Theo C"): $ec{E}$ and $ec{B}$ fields

$$\vec{E} = -\nabla \Phi - \frac{\partial \vec{A}}{\partial t} \; , \quad \vec{B} = \nabla \times \vec{A}$$

 Φ : scalar potential

 \vec{A} : vector potential

fields are invariant under simultaneous gauge transformations

$$\Phi \longrightarrow \Phi - \frac{\partial \Lambda}{\partial t} , \quad \vec{A} \longrightarrow \vec{A} + \nabla \Lambda$$

 Λ : arbitrary field

- Maxwell's equations are invariant as well
- lacktriangle a gauge fixing sets conditions on Λ (and hence, on the potentials)

• Coulomb gauge:
$$\nabla \cdot \vec{A} = 0$$

Lorenz gauge:
$$\nabla \cdot \vec{A} + \frac{1}{c^2} \frac{\partial \Phi}{\partial t} = 0$$

can be used to simplify Maxwell's equations

lacktriangle consider classical electrodynamics ("Theo C"): ec E and ec B fields

$$ec{E} = -
abla \Phi - rac{\partial ec{A}}{\partial t} \; , \quad ec{B} =
abla imes ec{A}$$

 Φ : scalar potential

 \vec{A} : vector potential

fields are invariant under simultaneous gauge transformations

$$\Phi \longrightarrow \Phi - \frac{\partial \Lambda}{\partial t} , \quad \vec{A} \longrightarrow \vec{A} + \nabla \Lambda$$

 Λ : arbitrary field

- Maxwell's equations are invariant as well
- lacktriangle a gauge fixing sets conditions on Λ (and hence, on the potentials)
 - Coulomb gauge: $\nabla \cdot \vec{A} = 0$
 - Lorenz gauge: $abla \cdot \vec{A} + rac{1}{c^2} rac{\partial \Phi}{\partial t} = 0$

can be used to simplify Maxwell's equations

- lacktriangle in QFTs: dependence on ξ_V introduced through gauge-fixing Lagrangian
 - \implies individual Feynman diagrams dependent on ξ_V

Cancellation of Gauge Dependences

- \bullet ξ_V encodes **redundant** (unphysical) degrees of freedom
 - \longrightarrow observables, decay amplitudes, etc. must not depend on ξ_V
 - cancellation is ensured by BRST symmetry

[C. Becchi, A. Rouet, R. Stora, Ann. Phys. 98 (1976) 287; M. Z. Iofa, I. V. Tyutin, Theor. Math. Phys. 27 (1976) 316]

Cancellation of Gauge Dependences

- \bullet ξ_V encodes **redundant** (unphysical) degrees of freedom
 - \longrightarrow observables, decay amplitudes, etc. must not depend on ξ_V
 - cancellation is ensured by BRST symmetry

[C. Becchi, A. Rouet, R. Stora, Ann. Phys. 98 (1976) 287; M. Z. Iofa, I. V. Tyutin, Theor. Math. Phys. 27 (1976) 316]

- lacktriangle for LO OS processes, cancellation of ξ_V dependences is straightforward
- at higher orders, the cancellation becomes very intricate
- possible violation of the cancellation: renormalization conditions for mixing angles
 - SM: CKM matrix solved

[B.A. Kniehl, F. Madricardo, M. Steinhauser, *Phys.Rev.* D62 (2000) 073010; Y. Yamada, *Phys.Rev.* D64 (2001) 036008;
P. Gambino, P.A. Grassi, F. Madricardo, *Phys.Lett.* B454 (1999) 98-104;
A. Barroso, L. Brucher, R. Santos, *Phys.Rev.* D62 (2000) 096003

2HDM: scalar mixing angles ?

Introduction to the 2HDM (I): Potential

two complex SU(2), Higgs doublets

$$\Phi_1 = \begin{pmatrix} \omega_1^+ \\ \frac{v_1 + \rho_1 + i\eta_1}{\sqrt{2}} \end{pmatrix} , \qquad \Phi_2 = \begin{pmatrix} \omega_2^+ \\ \frac{v_2 + \rho_2 + i\eta_2}{\sqrt{2}} \end{pmatrix}$$

• non-vanishing vacuum expectation values (VEVs) v_1, v_2 with

$$v^2 := v_1^2 + v_2^2 \approx (246 \text{ GeV})^2$$

Introduction to the 2HDM (I): Potential

two complex SU(2)_L Higgs doublets

$$\Phi_1 = \begin{pmatrix} \omega_1^+ \\ \frac{v_1 + \rho_1 + i\eta_1}{\sqrt{2}} \end{pmatrix} , \qquad \Phi_2 = \begin{pmatrix} \omega_2^+ \\ \frac{v_2 + \rho_2 + i\eta_2}{\sqrt{2}} \end{pmatrix}$$

lacktriangle non-vanishing **vacuum expectation values** (VEVs) v_1,v_2 with

$$v^2 := v_1^2 + v_2^2 \approx (246 \text{ GeV})^2$$

scalar Lagrangian with **CP- and** \mathbb{Z}_2 -conserving 2HDM potential:

$$V_{2\text{HDM}} \left(\Phi_{1}, \Phi_{2} \right) = m_{11}^{2} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) + m_{22}^{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right) - m_{12}^{2} \left[\left(\Phi_{1}^{\dagger} \Phi_{2} \right) + \left(\Phi_{2}^{\dagger} \Phi_{1} \right) \right]$$

$$+ \frac{\lambda_{1}}{2} \left(\Phi_{1}^{\dagger} \Phi_{1} \right)^{2} + \frac{\lambda_{2}}{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right)^{2} + \lambda_{3} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) \left(\Phi_{2}^{\dagger} \Phi_{2} \right)$$

$$+ \lambda_{4} \left(\Phi_{1}^{\dagger} \Phi_{2} \right) \left(\Phi_{2}^{\dagger} \Phi_{1} \right) + \frac{\lambda_{5}}{2} \left[\left(\Phi_{1}^{\dagger} \Phi_{2} \right)^{2} + \left(\Phi_{2}^{\dagger} \Phi_{1} \right)^{2} \right]$$

Introduction to the 2HDM (II): Parameters

- eight real-valued potential parameters:
 - dimensionless λ_i (i = 1, ..., 5)
 - mass-squared parameters $m_{11}^2,\,m_{22}^2$ and m_{12}^2
- difference w.r.t. MSSM: constants are fixed through SUSY relations
- transformation to the Higgs mass basis via scalar mixing angles
 - lacksquare α for the CP-even sector
 - lacksquare for the CP-odd and charged sector

$$(H, h, G^0, A, G^{\pm}, H^{\pm})$$

- aim: calculate all 2HDM Higgs boson decays @1-loop (electroweak)
- use perturbation theory to solve the scattering matrix S at 1-loop level

- aim: calculate all 2HDM Higgs boson decays @1-loop (electroweak)
- use perturbation theory to solve the scattering matrix S at 1-loop level

[FeynArts: T. Hahn, Comput. Phys. Commun. 140 (2001) 418;

FeynCalc: V. Shtabovenko, R. Mertig and F. Orellana, Comput. Phys. Commun. 207 (2016) 432-444]

- aim: calculate all 2HDM Higgs boson decays @1-loop (electroweak)
- use perturbation theory to solve the scattering matrix S at 1-loop level

[FeynArts: T. Hahn, Comput. Phys. Commun. 140 (2001) 418;

FeynCalc: V. Shtabovenko, R. Mertig and F. Orellana, Comput. Phys. Commun. 207 (2016) 432-444]

- aim: calculate all 2HDM Higgs boson decays @1-loop (electroweak)
- use perturbation theory to solve the scattering matrix S at 1-loop level

[FeynArts: T. Hahn, Comput. Phys. Commun. 140 (2001) 418;

FeynCalc: V. Shtabovenko, R. Mertig and F. Orellana, Comput. Phys. Commun. 207 (2016) 432-444]

all decay topologies are considered large number of diagrams

all decay topologies are considered **| large number** of diagrams

decay channels that are considered:

$$h/H/A \rightarrow f\bar{f} \ (f=c,s,t,b,\mu,\tau)$$

$$h/H \rightarrow VV \ (V = W^{\pm}, Z)$$

$$h/H \to VS \ (V = Z, W^{\pm}, S = A, H^{\pm})$$

■
$$H^{\pm} \to f\bar{f} \ (f = c, t, \nu_{\mu}, \nu_{\tau}, \bar{f} = \bar{s}, \bar{b}, \mu^{+}, \tau^{+})$$
 ■ $H \to hh$

$$h/H \to SS \ (S=A,H^{\pm})$$

$$\blacksquare H^{\pm} \rightarrow VS \ (V = W^{\pm}, S = h, H, A)$$

$$\blacksquare A \to VS \ (V = Z, W^{\pm}, S = h, H, H^{\pm})$$

$$\blacksquare H \rightarrow hh$$

all decay topologies are considered **| large number** of diagrams

decay channels that are considered:

$$h/H/A \rightarrow f\bar{f} \ (f=c,s,t,b,\mu,\tau)$$

$$h/H \rightarrow VV \ (V = W^{\pm}, Z)$$

$$h/H \to VS \ (V = Z, W^{\pm}, S = A, H^{\pm})$$

■
$$H^{\pm} \to f\bar{f} \ (f = c, t, \nu_{\mu}, \nu_{\tau}, \bar{f} = \bar{s}, \bar{b}, \mu^{+}, \tau^{+})$$
 ■ $H \to hh$

$$\blacksquare h/H \to SS \ (S=A,H^{\pm})$$

$$\blacksquare H^{\pm} \rightarrow VS \ (V = W^{\pm}, \ S = h, H, A)$$

$$A \to VS \ (V = Z, W^{\pm}, S = h, H, H^{\pm})$$

$$\blacksquare H \to hh$$

- (semi-)automated calculation of the decays
- many diagrams contain **UV divergences** renormalization

Renormalization of the 2HDM (I)

set of free parameters of the 2HDM (excluding CKM elements, ...)

$$\left\{ T_{h/H}, \ \alpha_{\text{em}}, \ m_W, \ m_Z, \ m_f \ , \ m_h, \ m_H, \ m_A, \ m_{H^{\pm}}, \ \alpha, \ \beta, \ m_{12}^2 \ , \cdots \ \right\}$$

Renormalization of the 2HDM (I)

set of free parameters of the 2HDM (excluding CKM elements, ...)

$$\left\{ T_{h/H}, \ \alpha_{\text{em}}, \ m_W, \ m_Z, \ m_f \ , \ m_h, \ m_H, \ m_A, \ m_{H^{\pm}}, \ \alpha, \ \beta, \ m_{12}^2 \ , \cdots \ \right\}$$

- renormalization program for the 2HDM:
 - tadpole terms standard / alternative tadpole scheme
 - mass counterterms on-shell
 - fine-structure constant at Z mass
 - soft- \mathbb{Z}_2 -breaking scale m_{12}^2 \longrightarrow $\overline{\mathrm{MS}}$
 - scalar mixing angles ?

[full details: MK, Master's thesis (2016), KIT; MK, R. Lorenz, M. M. Mühlleitner, R. Santos, H. Ziesche, J. High Energ. Phys. 2016 (2016) 143; MK, M. M. Mühlleitner, R. Santos, H. Ziesche, Phys. Rev. D95 (2017) 075019]

Renormalization of the 2HDM (II)

lacktriangle renormalization of mixing angles lpha and eta is **non-trivial** in the 2HDM

Renormalization of the 2HDM (II)

- lacktriangle renormalization of mixing angles lpha and eta is **non-trivial** in the 2HDM.
- lacktriangle simplest approach: $\overline{
 m MS}$ conditions for lpha and eta
 - → can be **numerically unstable**
 - → unsuitable scheme

[R. Lorenz, *Master's thesis* (2015), Karlsruhe Institute of Technology; MK, R. Lorenz, M. M. Mühlleitner, R. Santos, H. Ziesche, *J. High Energ. Phys.* **2016** (2016) 143]

Renormalization of the 2HDM (II)

- lacktriangle renormalization of mixing angles lpha and eta is **non-trivial** in the 2HDM
- lacktriangle simplest approach: $\overline{\mathrm{MS}}$ conditions for lpha and eta
 - → can be **numerically unstable**
 - → unsuitable scheme

[R. Lorenz, *Master's thesis* (2015), Karlsruhe Institute of Technology; MK, R. Lorenz, M. M. Mühlleitner, R. Santos, H. Ziesche, *J. High Energ. Phys.* **2016** (2016) 143]

other schemes used in literature yield gauge-dependent results

[S. Kanemura et al., Phys. Rev. D70 (2004) 115002]

- is there a renormalization scheme for the 2HDM satisfying the three criteria
 - gauge independence,
 - process independence (i.e. not fixed over a decay width),
 - numerical stability (i.e. leads to moderate NLO corrections)?

Renormalization of the 2HDM (III)

- gauge-independent approach: use the pinch technique (PT)
- the PT was worked out
 - to all orders in the SM [D. Binosi, J. Phys. G30 (2004) 1021]
 - at one-loop for the 2HDM [MK, Master's thesis (2016), KIT]

Renormalization of the 2HDM (III)

- gauge-independent approach: use the pinch technique (PT)
- the PT was worked out
 - to all orders in the SM [D. Binosi, J. Phys. G30 (2004) 1021]
 - at one-loop for the 2HDM [MK, Master's thesis (2016), KIT]
- PT-based definition of the scalar mixing angle counterterms: use the pinched scalar self-energies instead of the usual ones
- properties of the pinched scheme:
 - process-independent
 - manifestly gauge-independent by construction
 - gauge-independent NLO amplitudes
 - numerically stable (depending on the point in parameter space)
 - \Longrightarrow proposed solution for renormalizing $\delta lpha$ and δeta in the 2HDM

Numerical Analysis (I)

- we consider the **exemplary process** $H^{\pm} \rightarrow W^{\pm}h$
- exemplary parameter points (all other parameters: SM-like):

$$m_h = 125.09 \,\text{GeV}, \ m_H = 742.84 \,\text{GeV}, \ m_A = 700.13 \,\text{GeV}, \ m_{12} = 440.57 \,\text{GeV}$$

 $\tan \beta = 1.46, \ \alpha = -0.57, \ m_{H^{\pm}} = (654 \cdots 804) \,\text{GeV}$

Numerical Analysis (I)

- we consider the **exemplary process** $H^{\pm} \rightarrow W^{\pm}h$
- exemplary parameter points (all other parameters: SM-like):

$$m_h = 125.09 \,\text{GeV}, \ m_H = 742.84 \,\text{GeV}, \ m_A = 700.13 \,\text{GeV}, \ m_{12} = 440.57 \,\text{GeV}$$

 $\tan \beta = 1.46, \ \alpha = -0.57, \ m_{H^{\pm}} = (654 \cdots 804) \,\text{GeV}$

- keep in mind: the 2HDM contains a lot of free parameters
 - scanning through the parameter space is possible
- chosen parameter points respect several constraints:
 - theoretical (boundedness from below, tree-level unitarity, global minimum)
 - experimental (S/T/U parameters, lower bound on $m_{H^{\pm}}, ...$)

Numerical Analysis (II)

$$m_h = 125.09 \,\text{GeV}, \ m_H = 742.84 \,\text{GeV}$$

 $m_A = 700.13 \,\text{GeV}, \ m_{12} = 440.57 \,\text{GeV}$
 $\tan \beta = 1.46, \ \alpha = -0.57$

- pOS: "on-shell pinched"
- p*: "p*-pinched"
- KOSY: gauge-dependent scheme

superscripts "o", "c": definition over CP-odd / charged sectors, resp.

$$\Delta\Gamma = \frac{\Gamma_{\rm NLO} - \Gamma_{\rm LO}}{\Gamma_{\rm LO}}$$

Numerical Analysis (II)

$$m_h = 125.09 \,\text{GeV}, \ m_H = 742.84 \,\text{GeV}$$

 $m_A = 700.13 \,\text{GeV}, \ m_{12} = 440.57 \,\text{GeV}$
 $\tan \beta = 1.46, \ \alpha = -0.57$

- pOS: "on-shell pinched"
- p*: "p*-pinched"
- KOSY: gauge-dependent scheme

superscripts "o", "c": definition over CP-odd / charged sectors, resp.

$$\Delta\Gamma = \frac{\Gamma_{\rm NLO} - \Gamma_{\rm LO}}{\Gamma_{\rm LO}}$$

- for pinched schemes: NLO corrections are moderate (up to 20%)
- relatively large difference in finite parts missing higher orders (for full analysis: rescale the parameters future work)

Numerical Analysis (III)

scan over large parameter ranges

- proc: process-dependent
- pOS: "on-shell pinched"
- p*: "p*-pinched"
- KOSY: gauge-dependent scheme

superscript "c": definition over charged sector

$$\Delta\Gamma = \frac{\Gamma_{\rm NLO} - \Gamma_{\rm LO}}{\Gamma_{\rm LO}}$$

Numerical Analysis (III)

scan over large parameter ranges

- proc: process-dependent
- pOS: "on-shell pinched"
- p*: "p*-pinched"
- KOSY: gauge-dependent scheme

superscript "c": definition over charged sector

$$\Delta\Gamma = \frac{\Gamma_{\rm NLO} - \Gamma_{\rm LO}}{\Gamma_{\rm LO}}$$

- process-dependent scheme: huge NLO corrections (unsuitable)
- pinched schemes: well-behaving for large parameter ranges

Conclusions and Outlook

- gauge parameter independence: key principle for observables in QFTs
- certain renormalization schemes spoil this independence in the 2HDM
- **a** gauge-independent, process-independent and numerically stable scheme for $\delta\alpha$ and $\delta\beta$ was worked out for the first time for the 2HDM
- full electroweak one-loop corrections to 2HDM Higgs decays calculated
- combination with state-of-the-art corrections from HDECAY: development of new tool 2HDECAY
- phenomenological studies (planned):
 - dependence of NLO corrections on 2HDM type
 - analysis for certain interesting limits (decoupling, alignment, ...)
 - effect of NLO electroweak corrections on parameter space restriction

Thanks!

Backup slides

Motivation (III): Gauge Parameter Independence

many phenomenologically interesting models are based on gauge theories

Motivation (III): Gauge Parameter Independence

- many phenomenologically interesting models are based on gauge theories
- gauge theories imply the need for fixing a gauge, e.g. general R_ξ gauge
 necessary for removal of redundant degrees of freedom
- the class of R_{ξ} gauges form an equivalence class of the gauge theory equations of motions, observables, ... must not depend on ξ

Motivation (III): Gauge Parameter Independence

- many phenomenologically interesting models are based on gauge theories
- gauge theories imply the need for fixing a gauge, e.g. general R_ξ gauge
 necessary for removal of redundant degrees of freedom
- the class of R_{ξ} gauges form an equivalence class of the gauge theory equations of motions, observables, ... **must not depend** on ξ
- higher-order calculations: cancellation of gauge dependences becomes very intricate
- in the 2HDM: unsuitable renormalization of mixing angles spoils gauge parameter independence

Gauge Invariance in QED

- lacktriangle consider Quantum Electrodynamics with spinors $\Psi(x)$, photon $A_{\mu}(x)$
- we demand invariance under local U(1) gauge transformations

$$\Psi(x) \rightarrow e^{i\alpha(x)}\Psi(x)$$

Gauge Invariance in QED

- lacktriangle consider Quantum Electrodynamics with spinors $\Psi(x)$, photon $A_{\mu}(x)$
- we demand invariance under local U(1) gauge transformations

$$\Psi(x) \rightarrow e^{i\alpha(x)}\Psi(x)$$

proper inclusion of the transformation: covariant derivative

$$D_{\mu} = \partial_{\mu} + ieA_{\mu}(x) \qquad \longrightarrow \qquad D_{\mu}\Psi(x) \rightarrow e^{i\alpha(x)}D_{\mu}\Psi(x)$$

renormalizability: QED Lagrangian up to dim-4 operators

$$\mathcal{L}_{\text{QED}} = \bar{\Psi} \left(i \not \! D - m \right) \Psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

(m: fermion mass, $F_{\mu\nu}$: photon field strength tensor)

Gauge Dependences in QED

quantization e.g. through the Faddeev-Popov method:

$$\mathcal{L}_{\text{QED}} = \bar{\Psi} \left(i \not \!\!\!D - m \right) \Psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{\xi} (\partial^{\mu} A_{\mu}) (\partial_{\mu} A^{\mu})$$

- introduction of gauge-fixing and Lagrangian
 - → preservation of unitarity
 - → cancellation of unphysical polarization degrees of freedom

Gauge Dependences in QED

quantization e.g. through the Faddeev-Popov method:

$$\mathcal{L}_{\text{QED}} = \bar{\Psi} \left(i \not \!\!\!D - m \right) \Psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{\xi} (\partial^{\mu} A_{\mu}) (\partial_{\mu} A^{\mu})$$

- introduction of gauge-fixing and Lagrangian
 - preservation of unitarity
 - → cancellation of **unphysical polarization** degrees of freedom
- Feynman rules depend on gauge-fixing parameter ξ_V :

$$\mu \sim \sim \nu = \frac{-i}{k^2 - m_V^2} \left[g_{\mu\nu} - (1 - \xi_V) \frac{k^{\mu} k^{\nu}}{k^2 - \xi_V m_V^2} \right]$$

 \implies introduction of ξ_V dependence in (loop) calculations

Electroweak Corrections @1-Loop (III)

many diagrams contain UV divergences, i.e. formally, we have

Electroweak Corrections @1-Loop (III)

many diagrams contain UV divergences, i.e. formally, we have

• use dimensional regularization ($d = 4 - 2\epsilon$), isolate the divergences:

Electroweak Corrections @1-Loop (III)

many diagrams contain UV divergences, i.e. formally, we have

• use dimensional regularization ($d=4-2\epsilon$), isolate the divergences:

- remove the divergences via renormalization
- idea: split 'bare' parameters into renormalized values and counterterms

$$m_i^2 \to m_i^2 + \delta m_i^2$$

counterterms need to be fixed via renormalization conditions

Renormalization: On-Shell Conditions (I)

- lacktriangle consider **scalar field doublet** $(\phi_1,\ \phi_2)$
- field strength renormalization:

$$\begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}_0 = \sqrt{Z_{\phi}} \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \approx \left(1_{2 \times 2} + \frac{\delta Z_{\phi}}{2} \right) \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} , \quad \frac{\delta Z_{\phi}}{2} = \begin{pmatrix} \frac{\delta Z_{\phi_1 \phi_1}}{2} & \frac{\delta Z_{\phi_1 \phi_2}}{2} \\ \frac{\delta Z_{\phi_2 \phi_1}}{2} & \frac{\delta Z_{\phi_2 \phi_2}}{2} \end{pmatrix}$$

lacktriangle two-point correlation function for the doublet with momentum p^2 :

$$\begin{split} \widehat{\Gamma}_{\phi}(p^2) &:= \begin{pmatrix} \widehat{\Gamma}_{\phi_1\phi_1}(p^2) & \widehat{\Gamma}_{\phi_1\phi_2}(p^2) \\ \widehat{\Gamma}_{\phi_1\phi_2}(p^2) & \widehat{\Gamma}_{\phi_2\phi_2}(p^2) \end{pmatrix} \\ &= i\sqrt{Z_{\phi}}^{\dagger} \left[p^2 \mathbf{1}_{2\times 2} - D_{\phi}^2 + \Sigma_{\phi}(p^2) - \delta D_{\phi}^2 \right] \sqrt{Z_{\phi}} \approx i \left[p^2 \mathbf{1}_{2\times 2} - D_{\phi}^2 + \widehat{\Sigma}_{\phi}(p^2) \right] \\ \text{mass matrices} & \text{mass CTs} & \text{renormalized self-energies} \\ & 1\text{PI self-energies} \\ & i\Sigma(p^2) := --- \underbrace{1\text{PI}}_{----} = --- \underbrace{+--- \underbrace{+---}_{---}}_{----} + \cdots \end{split}$$

Renormalization: On-Shell Conditions (II)

- on-shell conditions:
 - \blacksquare mixing of fields vanishes for $p^2=m_{\phi_i}^2$
 - lacktriangle masses $m_{\phi_i}^2$ are the real parts of the pole of the propagator
 - lacktriangle normalization: residue of the propagator at its pole equals i
- fixation of diagonal mass counterterms:

$$\operatorname{Re}\left[\delta D_{\phi_1\phi_1}^2\right] = \operatorname{Re}\left[\Sigma_{\phi_1\phi_1}(m_{\phi_1}^2)\right] , \quad \operatorname{Re}\left[\delta D_{\phi_2\phi_2}^2\right] = \operatorname{Re}\left[\Sigma_{\phi_2\phi_2}(m_{\phi_2}^2)\right]$$

fixation of field strength renormalization constants:

$$\delta Z_{\phi_1 \phi_1} = -\text{Re} \left[\frac{\partial \Sigma_{\phi_1 \phi_1}(p^2)}{\partial p^2} \right]_{p^2 = m_{\phi_1}^2} , \quad \delta Z_{\phi_2 \phi_2} = -\text{Re} \left[\frac{\partial \Sigma_{\phi_2 \phi_2}(p^2)}{\partial p^2} \right]_{p^2 = m_{\phi_2}^2}$$

$$\delta Z_{\phi_1 \phi_2} = \frac{2}{m_{\phi_1}^2 - m_{\phi_2}^2} \text{Re} \left[\Sigma_{\phi_1 \phi_2}(m_{\phi_2}^2) - \delta D_{\phi_1 \phi_2}^2 \right] , \quad \delta Z_{\phi_2 \phi_1} = \frac{2}{m_{\phi_2}^2 - m_{\phi_1}^2} \text{Re} \left[\Sigma_{\phi_1 \phi_2}(m_{\phi_1}^2) - \delta D_{\phi_1 \phi_2}^2 \right]$$

lacktriangle the specific form of the $\delta D^2_{\phi_i\phi_j}$ depends on the tadpole scheme

Renormalization: General Tadpole Conditions

renormalization conditions for the tadpole terms:

conversion from gauge to mass basis:

$$\begin{pmatrix} \delta T_1 \\ \delta T_2 \end{pmatrix} = \begin{pmatrix} c_{\alpha} & -s_{\alpha} \\ s_{\alpha} & c_{\alpha} \end{pmatrix} \begin{pmatrix} \delta T_{H^0} \\ \delta T_{h^0} \end{pmatrix} = \begin{pmatrix} c_{\alpha} \delta T_{H^0} - s_{\alpha} \delta T_{h^0} \\ s_{\alpha} \delta T_{H^0} + c_{\alpha} \delta T_{h^0} \end{pmatrix}$$

- purpose: restoring the minimum conditions of the potential at NLO
- practical effect: no tadpole diagrams in NLO calculations

Renormalization: Standard Tadpole Scheme

- standard scheme: vevs are derived from the loop-corrected potential (e.g. in A. Denner: arXiv:0709.1075)
- vevs in the mass relations produce correct one-loop OS masses, e.g.

$$m_W^2 = g^2 \frac{v^2}{4}$$
, $m_{A^0}^2 = v^2 \left(\frac{m_{12}^2}{v_1 v_2} - \lambda_5 \right)$

- tadpole terms appear explicitly in the bare mass matrices
 - → mass matrix counterterms contain the **tadpole counterterms**:

$$\delta D_{\phi}^2 \approx \begin{pmatrix} \delta m_{\phi_1}^2 & 0 \\ 0 & \delta m_{\phi_2}^2 \end{pmatrix} + \begin{pmatrix} \delta T_{\phi_1 \phi_1} & \delta T_{\phi_1 \phi_2} \\ \delta T_{\phi_1 \phi_2} & \delta T_{\phi_2 \phi_2} \end{pmatrix}$$

- one-loop corrected potential is gauge-dependent
 - → vevs are gauge-dependent
 - → mass counterterms become gauge-dependent

Renormalization: Alternative Tadpole Scheme

- **alternative scheme**: vevs represent the same minimum as at **tree level** [based on: J. Fleischer, F. Jegerlehner, *Phys. Rev.* D **23** (1981) 2001-2026]
- bare masses are expressed through gauge-independent tree-level vevs
 → mass CTs become gauge-independent
- correct minimum conditions @NLO require a shift in the vevs

$$v_1 \rightarrow v_1 + \delta v_1$$
, $v_2 \rightarrow v_2 + \delta v_2$

fixation of the shifts by applying the tadpole conditions:

$$\begin{pmatrix} \delta v_1 \\ \delta v_2 \end{pmatrix} = \begin{pmatrix} \frac{\delta T_{H^0}}{m_{H^0}^2} c_{\alpha} - \frac{\delta T_{h^0}}{m_{h^0}^2} s_{\alpha} \\ \frac{\delta T_{H^0}}{m_{H^0}^2} s_{\alpha} + \frac{\delta T_{h^0}}{m_{h^0}^2} c_{\alpha} \end{pmatrix}$$

- the shifts translate into every CT, wave function renormalization constants and Feynman rules
- alternative tadpole scheme worked out for the 2HDM

Renormalization: Alternative Tadpole Scheme

example: W boson mass

$$m_W^2 = g^2 \frac{v^2}{4} \longrightarrow m_W^2 + g^2 \frac{v_1 \delta v_1 + v_2 \delta v_2}{2} = m_W^2 + i \left(\begin{array}{c} \bigcirc \\ W^{\pm} & H^0 \\ W^{\pm} & W^{\pm} \end{array} \right) + i \left(\begin{array}{c} \bigcirc \\ W^{\pm} & h^0 \\ W^{\pm} & M^{\pm} \end{array} \right)$$

example: coupling between Higgs and Z bosons

$$ig_{H^0Z^0Z^0} = \frac{ig^2}{2c_W^2} \left(c_{\alpha}v_1 + s_{\alpha}v_2 \right) , \quad ig_{H^0H^0Z^0Z^0} = \frac{ig^2}{2c_W^2}$$

$$ig_{H^0Z^0Z^0} \to ig_{H^0Z^0Z^0} + \frac{ig^2}{2c_W^2} \left(c_{\alpha}\delta v_1 + s_{\alpha}\delta v_2 \right) = ig_{H^0Z^0Z^0} + \left(\begin{array}{c} U & Z^0 \\ H^0 & Z^0 \end{array} \right)_{\text{trunc}}$$

- effects of the alternative tadpole scheme:
 - tadpole diagrams are added everywhere where they exist in the 2HDM
 - mass counterterms become manifestly gauge-independent
 - tadpole counterterms in the scalar sector are removed

Renormalization of the 2HDM (II)

- "no-go theorem" for the MSSM: a renormalization scheme for $\tan \beta$ may not be simultaneously [A. Freitas, D. Stöckinger, *Phys. Rev.* D66 (2002) 095014]
 - gauge-independent
 - process-independent
 - numerically stable (i.e. leads to moderate NLO corrections)

Renormalization: Scalar Mixing Angles

approach by S. Kanemura *et al.*: connect the definition of α and β with the **inverse propagator matrix** (S. Kanemura *et al.*: arXiv:hep-ph/0408364)

$$\begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}_0 = R_{\theta,0}^T \begin{pmatrix} \widetilde{\phi}_1 \\ \widetilde{\phi}_2 \end{pmatrix}_0 \approx R_{\delta\theta}^T R_{\theta}^T \sqrt{Z_{\widetilde{\phi}}} R_{\theta} R_{\theta}^T \begin{pmatrix} \widetilde{\phi}_1 \\ \widetilde{\phi}_2 \end{pmatrix} \approx \begin{pmatrix} 1 + \frac{\delta Z_{\phi_1 \phi_1}}{2} & \frac{\delta C_{\phi_2} + \delta \theta}{\delta C_{\phi_2} - \delta \theta} & 1 + \frac{\delta Z_{\phi_2 \phi_2}}{2} \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}$$

mixing angle counterterms within the standard tadpole scheme:

$$\begin{split} \delta\alpha &= \frac{1}{2\left(m_{H^0}^2 - m_{h^0}^2\right)} \text{Re} \Big[\Sigma_{H^0h^0}(m_{H^0}^2) + \Sigma_{H^0h^0}(m_{h^0}^2) - 2\delta T_{H^0h^0} \Big] \\ \delta\beta &= -\frac{1}{2m_{H^\pm}^2} \text{Re} \Big[\Sigma_{G^\pm H^\pm}(m_{H^\pm}^2) + \Sigma_{G^\pm H^\pm}(0) - 2\delta T_{G^\pm H^\pm} \Big] \quad \text{(for details: } \quad \text{R. Lorenz, Master's thesis, } \\ \text{KIT, 2015)} \end{split}$$

it was shown analytically that **Kanemura's scheme** introduces an intricate gauge-dependence in $\delta\alpha$ and $\delta\beta$

(M. Krause, Master's thesis, Karlsruhe Institute of Technology, 2016)

Pinch Technique: Introduction (I)

$$s = (r_1 + p_1)^2 = (r_2 + p_2)^2$$

$$t = (r_1 - r_2)^2 = (p_1 - p_2)^2$$

we consider a fermion scattering process at one-loop QCD:

$$\mathcal{A}_{\text{full}}(s, t, m_1, m_2) = \mathcal{A}_{\text{box}}(s, t, m_1, m_2; \xi) + \mathcal{A}_{\text{tri}}(t, m_1, m_2; \xi) + \mathcal{A}_{\text{self}}(t; \xi)$$

- the gauge dependences have to cancel within the individual topologies
 - → rearrangement of the contributions is always possible
 - → rearrangement shows that all gauge dependences have self-energy-like or triangle-like form

$$\mathcal{A}_{\text{full}}(s,t,m_1,m_2) = \tilde{\mathcal{A}}_{\text{box}}(s,t,m_1,m_2) + \tilde{\mathcal{A}}_{\text{tri}}(t,m_1,m_2) + \tilde{\mathcal{A}}_{\text{self}}(t) ,$$

$$\mathcal{A}_{\text{tri}}(t,m_1,m_2;\xi) \rightarrow \tilde{\mathcal{A}}_{\text{tri}}(t,m_1,m_2) + f_{\text{self}}(t;\xi) , \text{ etc.}$$

Pinch Technique: Introduction (II)

- determination of the gauge-dependent contributions: "pinching"
- main idea: trigger the elementary Ward identity for the loop momentum

$$k = (k + p - m) - (p - m) = S^{-1}(k + p) - S^{-1}(p)$$

right expression: vanishes OS between spinors

inverse fermion propagators

left expression: cancels ("pinches out") an internal fermion propagator

Pinch Technique: Results (I)

- lacktriangle (almost) all pinch contributions are **proportional** to $(1-\xi)$
- the non-pinched contributions are **equivalent** to diagrams calculated in **Feynman-'t Hooft gauge**, i.e. for $\xi \equiv 1$

- the pinch contributions are self-energy like, i.e. functions of only t
 - → reallocation of pinch contributions to the gluon self-energy possible

Pinch Technique: Results (II)

sum of all pinch contributions -> cancellation of gauge dependences

	$g_{\rm s}^2 t (1-\xi)^2 \int_k \frac{k^\mu k^\nu}{k^4 (k+q)^4}$	$g_{\rm s}^2 t (1-\xi) \int_k \frac{k^{\mu} k^{\nu}}{k^4 (k+q)^2}$	$g_{\rm s}^2 t (1-\xi) \int_k \frac{g^{\mu\nu}}{k^2 (k+q)^4}$	$g_{\mathrm{s}}^2 t (1-\xi) \int_k \frac{g^{\mu\nu}}{k^4}$
$i\Sigma_{ m box}^{\mu u}$	$trac{C_{ m A}}{2}$	0	$-tC_{ m A}$	0
$i\Sigma^{\mu\nu}_{\mathrm{tri}1}$	0	0	0	$C_{ m A}-2C_{ m f}$
$i\Sigma^{\mu\nu}_{\mathrm{tri}2}$	$-tC_{ m A}$	$2C_{ m A}$	$2tC_{ m A}$	$-2C_{\rm A}$
$i\Sigma^{\mu\nu}_{ m self,q}$	0	0	0	$2C_{ m f}$
$i\Sigma_{\rm self,g}^{\mu\nu}$	$trac{C_{ m A}}{2}$	$-2C_{ m A}$	$-tC_{ m A}$	$C_{ m A}$
Sum	0	0	0	0

 C_A, C_f : Casimir operators

- main results from the application of the pinch technique:
 - demonstration of intricate cancellation of gauge dependences
 - cancellation is not accidental, but follows from Ward identities

Gauge-Independent Self-Energies via PT

- all pinch contributions are self-energy-like
 - → reallocate pinch contributions to the gluon self-energy

- the pinched self-energy is equivalent to the one evaluated for $\xi \equiv 1$ after the cancellation of all gauge dependences
 - → Feynman-'t Hooft-gauge is a special gauge choice
- interesting properties of the pinched gluon self-energy:
 - analogy to the gluon self-energy given by the Background Field Method
 - uniquely defined by the pinch technique framework
 - manifestly gauge-independent → allows for gauge-independent counterterms
 - obeys QED-like Ward identities instead of complicated Slavnov-Taylor identities

[for more details cf. e.g. D. Binosi, J. Papavassiliou, Phys. Rep. 479 (2009) 1]

Applications of the Pinch Technique

- the pinch technique can be applied to e.g. the SM, MSSM, (N)2HDM, ...
- for consistency: tadpole diagrams have to be taken into account
 - → "alternative tadpole scheme" is needed (cf. part II of the talk)
- applications of the pinched self-energies:
 - definition of gauge-independent counterterms (cf. part III of the talk)
 - general analysis of gauge dependence cancellations [D. Binosi, J. Papavassiliou, Phys. Rev. **D65** (2002) 0850031
 - generalization to all orders [D. Binosi, J. Phys. G30 (2004) 1021]
 - construction of QED-like Ward identities for e.g. QCD
 - gauge-independent definition of electroweak parameters
 - consistent resummation for resonant transition amplitudes
 - extraction of gauge-independent part of BFM self-energies

[D. Binosi, J. Papavassiliou,
→ Phys. Rep. 479 (2009) 1;
J. Papavassiliou, Phys.
Rev. D50 (1994) 5958]

Implementation: 2HDECAY (I)

Implementation: 2HDECAY (I)

2HDECAY: "2HDM HDECAY"

A program for the calculation One-Loop Electroweak Corrections to Higgs Decays in the Two-Higgs-Doublet Model Including State-of-the-Art QCD Corrections

[MK, M. M. Mühlleitner, M. Spira, in preparation, arxiv:18MM.XXXXX]

Implementation: 2HDECAY (II)

[MK, M. M. Mühlleitner, M. Spira, in preparation, arxiv:18MM.XXXXX]

Numerical Analysis (II)

$$m_h = 125.09 \,\text{GeV}, \ m_H = 742.84 \,\text{GeV}$$

 $m_A = 700.13 \,\text{GeV}, \ m_{12} = 440.57 \,\text{GeV}$
 $\tan \beta = 1.46, \ \alpha = -0.57$

- proc: process-dependent
- pOS: "on-shell pinched"
- p*: "p*-pinched"
- KOSY: gauge-dependent scheme

superscripts "o", "c": definition over CP-odd / charged sectors, resp.

$$\Delta\Gamma = \frac{\Gamma_{\rm NLO} - \Gamma_{\rm LO}}{\Gamma_{\rm LO}}$$

Numerical Analysis (II)

$$m_h = 125.09 \,\text{GeV}, \ m_H = 742.84 \,\text{GeV}$$

 $m_A = 700.13 \,\text{GeV}, \ m_{12} = 440.57 \,\text{GeV}$
 $\tan \beta = 1.46, \ \alpha = -0.57$

- proc: process-dependent
- pOS: "on-shell pinched"
- p*: "p*-pinched"
- KOSY: gauge-dependent scheme

superscripts "o", "c": definition over CP-odd / charged sectors, resp.

$$\Delta\Gamma = \frac{\Gamma_{\rm NLO} - \Gamma_{\rm LO}}{\Gamma_{\rm LO}}$$

- kinks: thresholds for certain mass configurations
- process-dependent scheme is often unsuitable (large NLO corrections)

Numerical Analysis (II)

$$m_h = 125.09 \,\text{GeV}, \ m_H = 742.84 \,\text{GeV}$$

 $m_A = 700.13 \,\text{GeV}, \ m_{12} = 440.57 \,\text{GeV}$
 $\tan \beta = 1.46, \ \alpha = -0.57$

- proc: process-dependent
- pOS: "on-shell pinched"
- p*: "p*-pinched"
- KOSY: gauge-dependent scheme

superscripts "o", "c": definition over CP-odd / charged sectors, resp.

$$\Delta\Gamma = \frac{\Gamma_{\rm NLO} - \Gamma_{\rm LO}}{\Gamma_{\rm LO}}$$

- kinks: thresholds for certain mass configurations
- process-dependent scheme is often unsuitable (large NLO corrections)

Numerical Analysis (IV)

scan over large parameter ranges

- proc: process-dependent
- pOS: "on-shell pinched"
- p*: "p*-pinched"
- KOSY: gauge-dependent scheme

superscript "c": definition over charged sector

$$\Delta\Gamma = \frac{\Gamma_{\rm NLO} - \Gamma_{\rm LO}}{\Gamma_{\rm LO}}$$

- for LO approaching zero, $\Delta\Gamma$ may become large (numerical instability)
- numerical instability is "artificial" (no problem of renormalization scheme)