Corrections to 2HDM Higgs Decays with 2HDECAY

Marcel Krause
Institute for Theoretical Physics (ITP), Karlsruhe Institute of Technology (KIT)

- Motivation
- Principle of Gauge Invariance
- Introduction to the 2HDM
- Automated 1-Loop Calculations with 2HDECAY
- Numerical Results
2HDM: one of the simplest extensions of the SM
- dark matter candidate (*Inert Doublet Model*)
- source of CP violation
- extended scalar sector
- renormalizable
Motivation (I): Two-Higgs-Doublet Model

- 2HDM: one of the simplest extensions of the SM
 - dark matter candidate (Inert Doublet Model)
 - source of CP violation
 - extended scalar sector
 - renormalizable

- renormalization of the two scalar mixing angles in the 2HDM is non-trivial

- previously existing schemes are either numerically unstable, process-dependent or gauge-dependent

- search for a suitable renormalization scheme of the scalar mixing angles
 - full electroweak NLO corrections to all decays within the 2HDM
Motivation (II): Electroweak @1-Loop

- high-precision predictions for branching ratios in BSM models
Motivation (II): Electroweak @1-Loop

- high-precision predictions for branching ratios in BSM models
- **state-of-the-art** code for branching ratios of Higgs decays in the 2HDM: **HDECAY**
 - off-shell decay modes for final-state massive vector bosons / heavy quarks
 - loop-induced decays to final-state gluon/photon pairs and $Z\gamma$
 - QCD corrections to final-state quark pairs
- electroweak corrections at one-loop are **still missing**
Motivation (II): Electroweak @1-Loop

- high-precision predictions for branching ratios in BSM models

- **state-of-the-art** code for branching ratios of Higgs decays in the 2HDM: HDECAY
 - off-shell decay modes for final-state massive vector bosons / heavy quarks
 - loop-induced decays to final-state gluon/photon pairs and $Z\gamma$
 - QCD corrections to final-state quark pairs

- electroweak corrections at one-loop are **still missing**

- **interesting theoretical studies** with one-loop electroweak corrections:
 - differences w.r.t. MSSM one-loop corrections (integrate out SUSY masses)
 - 2HDM as effective theory for the MSSM with heavy sparticles
 - studies on renormalization scheme dependence (estimate of theoretical errors due to missing higher orders)
 - phenomenologically interesting limits (decoupling, alignment, wrong-sign, …)
Gauge Invariance in Electrodynamics / QFTs

- consider classical electrodynamics ("Theo C"): \vec{E} and \vec{B} fields

\[\vec{E} = -\nabla \Phi - \frac{\partial \vec{A}}{\partial t}, \quad \vec{B} = \nabla \times \vec{A} \]

Φ: scalar potential

\vec{A}: vector potential
Gauge Invariance in Electrodynamics / QFTs

- consider classical electrodynamics (“Theo C”): \vec{E} and \vec{B} fields
 \[\vec{E} = -\nabla \Phi - \frac{\partial \vec{A}}{\partial t}, \quad \vec{B} = \nabla \times \vec{A} \]
 Φ : scalar potential
 \vec{A} : vector potential

- fields are invariant under simultaneous gauge transformations
 \[\Phi \rightarrow \Phi - \frac{\partial \Lambda}{\partial t}, \quad \vec{A} \rightarrow \vec{A} + \nabla \Lambda \]
 Λ : arbitrary field

 Maxwell’s equations are invariant as well
Gauge Invariance in Electrodynamics / QFTs

- consider classical electrodynamics ("Theo C"): \(\vec{E} \) and \(\vec{B} \) fields

\[
\vec{E} = -\nabla \Phi - \frac{\partial \vec{A}}{\partial t}, \quad \vec{B} = \nabla \times \vec{A}
\]

\(\Phi : \) scalar potential

\(\vec{A} : \) vector potential

- fields are invariant under simultaneous gauge transformations

\[
\Phi \rightarrow \Phi - \frac{\partial \Lambda}{\partial t}, \quad \vec{A} \rightarrow \vec{A} + \nabla \Lambda
\]

\(\Lambda : \) arbitrary field

- Maxwell’s equations are invariant as well

- a gauge fixing sets conditions on \(\Lambda \) (and hence, on the potentials)

 - Coulomb gauge: \(\nabla \cdot \vec{A} = 0 \)

 - Lorenz gauge: \(\nabla \cdot \vec{A} + \frac{1}{c^2} \frac{\partial \Phi}{\partial t} = 0 \)

 can be used to simplify Maxwell’s equations
Gauge Invariance in Electrodynamics / QFTs

- consider classical electrodynamics ("Theo C"): \vec{E} and \vec{B} fields

$$\vec{E} = -\nabla \Phi - \frac{\partial \vec{A}}{\partial t}, \quad \vec{B} = \nabla \times \vec{A}$$

Φ : scalar potential
\vec{A} : vector potential

- fields are invariant under simultaneous gauge transformations

$$\Phi \rightarrow \Phi - \frac{\partial \Lambda}{\partial t}, \quad \vec{A} \rightarrow \vec{A} + \nabla \Lambda$$

Λ : arbitrary field

Maxwell’s equations are invariant as well

- a gauge fixing sets conditions on Λ (and hence, on the potentials)

 - Coulomb gauge: $\nabla \cdot \vec{A} = 0$

 - Lorenz gauge: $\nabla \cdot \vec{A} + \frac{1}{c^2} \frac{\partial \Phi}{\partial t} = 0$

- in QFTs: dependence on ξ_V introduced through gauge-fixing Lagrangian

 individual Feynman diagrams dependent on ξ_V
Cancellation of Gauge Dependences

- ξ_V encodes **redundant** (unphysical) degrees of freedom
 - observables, decay amplitudes, etc. **must not depend** on ξ_V
 - cancellation is ensured by BRST symmetry

Cancellation of Gauge Dependences

- ξ_V encodes **redundant** (unphysical) degrees of freedom
 - observables, decay amplitudes, etc. **must not depend** on ξ_V
 - cancellation is ensured by BRST symmetry

- for LO OS processes, cancellation of ξ_V dependences is straightforward

- at higher orders, the cancellation becomes **very intricate**

- possible **violation** of the cancellation: renormalization conditions for mixing angles

 - SM: CKM matrix solved

 - 2HDM: **scalar mixing angles**

 ?
Introduction to the 2HDM (I): Potential

- **two complex SU(2)_L Higgs doublets**

\[\Phi_1 = \left(\begin{array}{c} \omega_1^+ \\ \frac{v_1 + \rho_1 + i \eta_1}{\sqrt{2}} \end{array} \right), \quad \Phi_2 = \left(\begin{array}{c} \omega_2^+ \\ \frac{v_2 + \rho_2 + i \eta_2}{\sqrt{2}} \end{array} \right) \]

- **non-vanishing vacuum expectation values (VEVs)** \(v_1, v_2 \) with

\[v^2 := v_1^2 + v_2^2 \approx (246 \text{ GeV})^2 \]
Introduction to the 2HDM (I): Potential

- **two** complex SU(2)$_L$ Higgs **doublets**
 \[
 \Phi_1 = \left(\begin{array}{c}
 \omega_1^+ \\
 v_1 + \rho_1 + i\eta_1 \\
 \sqrt{2}
 \end{array} \right), \quad \Phi_2 = \left(\begin{array}{c}
 \omega_2^+ \\
 v_2 + \rho_2 + i\eta_2 \\
 \sqrt{2}
 \end{array} \right)
 \]

- non-vanishing **vacuum expectation values (VEVs)** v_1, v_2 with
 \[
 v^2 := v_1^2 + v_2^2 \approx (246 \text{ GeV})^2
 \]

- scalar Lagrangian with **CP- and \mathbb{Z}_2-conserving** 2HDM potential:
 \[
 V_{\text{2HDM}} (\Phi_1, \Phi_2) = m_{11}^2 \left(\Phi_1^\dagger \Phi_1 \right) + m_{22}^2 \left(\Phi_2^\dagger \Phi_2 \right) - m_{12}^2 \left[\left(\Phi_1^\dagger \Phi_2 \right) + \left(\Phi_2^\dagger \Phi_1 \right) \right]
 + \frac{\lambda_1}{2} \left(\Phi_1^\dagger \Phi_1 \right)^2 + \frac{\lambda_2}{2} \left(\Phi_2^\dagger \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^\dagger \Phi_1 \right) \left(\Phi_2^\dagger \Phi_2 \right)
 + \lambda_4 \left(\Phi_1^\dagger \Phi_2 \right) \left(\Phi_2^\dagger \Phi_1 \right) + \frac{\lambda_5}{2} \left[\left(\Phi_1^\dagger \Phi_2 \right)^2 + \left(\Phi_2^\dagger \Phi_1 \right)^2 \right]
 \]
Introduction to the 2HDM (II): Parameters

- **eight** real-valued potential parameters:
 - dimensionless λ_i ($i = 1, ..., 5$)
 - mass-squared parameters m_{11}^2, m_{22}^2 and m_{12}^2

- difference w.r.t. MSSM: constants are **fixed through SUSY relations**

- transformation to the Higgs mass basis via **scalar mixing angles**
 - α for the CP-even sector
 - β for the CP-odd and charged sector

\[(H, h, G^0, A, G^\pm, H^\pm) \]
Electroweak Corrections @1-Loop (I)

- **aim:** calculate all 2HDM Higgs boson decays \(@1\text{-loop (electroweak)} \)
- use **perturbation theory** to solve the scattering matrix \(S \) at 1-loop level
Electroweak Corrections @1-Loop (I)

- **aim:** calculate all 2HDM Higgs boson decays @1-loop (electroweak)
- use **perturbation theory** to solve the scattering matrix \(S \) at 1-loop level

2HDM "electroweak Lagrangian“

Model file

FeynArts

Processes, e.g.

\[H \rightarrow G^+ b \]

\[H^\pm \rightarrow H^\pm t \]

Electroweak Corrections @1-Loop (I)

- **aim**: calculate all 2HDM Higgs boson decays @1-loop (electroweak)
- use **perturbation theory** to solve the scattering matrix S at 1-loop level

2HDM „electroweak Lagrangian“

Model file

FeynArts

Processes, e.g.

Feynman rules

Amplitudes

$A = \langle f | S | i \rangle$

Analytically

FeynCalc

Decay Widths

$\Gamma \rightarrow |A|^2$

@1-loop

Electroweak Corrections @1-Loop (I)

- **aim:** calculate all 2HDM Higgs boson decays @1-loop (electroweak)
- use **perturbation theory** to solve the scattering matrix S at 1-loop level

![Diagram](image)

- **2HDM „electroweak Lagrangian“**
 - Model file: FeynArts
- **Processes, e.g.**
 - Feynman rules: FeynArts
 - Amplitudes $A = \langle f | S | i \rangle$
 - Analytically: FeynCalc
- **2HDECAY**
 - Full result
 - Python
- **HDECAY**
 - QCD, off-shell, loop-induced
 - FORTRAN
- **Decay Widths**
 - $\Gamma \rightarrow |A|^2$
 - @1-loop

Electroweak Corrections @1-Loop (II)

- all decay topologies are considered \[\rightarrow\text{large number of diagrams}\]
Electroweak Corrections @1-Loop (II)

- all decay topologies are considered ➔ large number of diagrams

- decay channels that are considered:

 - $h/H/A \rightarrow f \bar{f}$ ($f = c, s, t, b, \mu, \tau$)
 - $h/H \rightarrow VV$ ($V = W^\pm, Z$)
 - $h/H \rightarrow VS$ ($V = Z, W^\pm$, $S = A, H^\pm$)
 - $H^\pm \rightarrow f \bar{f}$ ($f = c, t, \nu_\mu, \nu_\tau$, $\bar{f} = \bar{s}, \bar{b}, \mu^+, \tau^+$)
 - $h/H \rightarrow SS$ ($S = A, H^\pm$)
 - $H^\pm \rightarrow VS$ ($V = W^\pm$, $S = h, H, A$)
 - $A \rightarrow VS$ ($V = Z, W^\pm$, $S = h, H, H^\pm$)
 - $H \rightarrow hh$
Electroweak Corrections @1-Loop (II)

- All decay topologies are considered → Large number of diagrams

- Decay channels that are considered:
 - $h/H/A \rightarrow f\bar{f}$ ($f = c, s, t, b, \mu, \tau$)
 - $h/H \rightarrow VV$ ($V = W^\pm, Z$)
 - $h/H \rightarrow VS$ ($V = Z, W^\pm, S = A, H^\pm$)
 - $H^\pm \rightarrow f\bar{f}$ ($f = c, t, \nu_\mu, \nu_\tau$, $\bar{f} = \bar{s}, \bar{b}, \mu^+, \tau^+$)
 - $h/H \rightarrow SS$ ($S = A, H^\pm$)
 - $H^\pm \rightarrow VS$ ($V = W^\pm$, $S = h, H, A$)
 - $A \rightarrow VS$ ($V = Z, W^\pm$, $S = h, H, H^\pm$)
 - $H \rightarrow hh$

- (semi-)Automated calculation of the decays

- Many diagrams contain UV divergences → Renormalization
Renormalization of the 2HDM (I)

- set of free parameters of the 2HDM (excluding CKM elements, …)

\[\{ T_{h/H}, \alpha_{em}, m_W, m_Z, m_f, m_h, m_H, m_A, m_{H^\pm}, \alpha, \beta, m_{12}^2, \cdots \} \]
Renormalization of the 2HDM (I)

- set of free parameters of the 2HDM (excluding CKM elements, …)
 \[\{ T_{h/H}, \alpha_{em}, m_W, m_Z, m_f, m_h, m_H, m_A, m_{H^\pm}, \alpha, \beta, m_{12}^2, \cdots \} \]

- renormalization program for the 2HDM:
 - tadpole terms \(\rightarrow\) standard / alternative tadpole scheme
 - mass counterterms \(\rightarrow\) on-shell
 - fine-structure constant \(\rightarrow\) at Z mass
 - soft-\(\mathbb{Z}_2\)-breaking scale \(m_{12}^2 \rightarrow \overline{\text{MS}}\)
 - scalar mixing angles \(\rightarrow\) ?

[full details: MK, Master's thesis (2016), KIT;
Renormalization of the 2HDM (II)

- renormalization of mixing angles α and β is non-trivial in the 2HDM
Renormalization of the 2HDM (II)

- renormalization of mixing angles α and β is **non-trivial** in the 2HDM

- simplest approach: $\overline{\text{MS}}$ conditions for α and β
 - can be **numerically unstable**
 - **unsuitable scheme**

Renormalization of the 2HDM (II)

- renormalization of mixing angles α and β is non-trivial in the 2HDM

- simplest approach: $\overline{\text{MS}}$ conditions for α and β
 - can be numerically unstable
 - unsuitable scheme

- other schemes used in literature yield gauge-dependent results

- is there a renormalization scheme for the 2HDM satisfying the three criteria

 - gauge independence,
 - process independence (i.e. not fixed over a decay width),
 - numerical stability (i.e. leads to moderate NLO corrections)?

Renormalization of the 2HDM (III)

- gauge-independent approach: use the **pinch technique** (PT)

- the PT was worked out
Renormalization of the 2HDM (III)

- **gauge-independent approach**: use the **pinch technique** (PT)

- **the PT was worked out**
 - to all orders in the SM
 - at one-loop for the 2HDM

- **PT-based definition** of the scalar mixing angle counterterms:
 - use the pinched scalar self-energies instead of the usual ones

- **properties of the pinched scheme**:
 - process-independent
 - manifestly **gauge-independent** by construction
 - gauge-independent NLO amplitudes
 - numerically stable (depending on the point in parameter space)
 - proposed solution for renormalizing $\delta \alpha$ and $\delta \beta$ in the 2HDM
Numerical Analysis (I)

- we consider the **exemplary process** $H^\pm \rightarrow W^\pm h$

- exemplary parameter points (all other parameters: SM-like):

 \[
 m_h = 125.09 \text{ GeV}, \quad m_H = 742.84 \text{ GeV}, \quad m_A = 700.13 \text{ GeV}, \quad m_{12} = 440.57 \text{ GeV}
 \]

 \[
 \tan \beta = 1.46, \quad \alpha = -0.57, \quad m_{H^\pm} = (654 \cdots 804) \text{ GeV}
 \]
Numerical Analysis (I)

- we consider the **exemplary process** $H^\pm \rightarrow W^\pm h$

- exemplary parameter points (all other parameters: SM-like):

 \[\begin{align*}
 m_h &= 125.09 \text{ GeV}, \quad m_H = 742.84 \text{ GeV}, \quad m_A = 700.13 \text{ GeV}, \quad m_{12} = 440.57 \text{ GeV} \\
 \tan \beta &= 1.46, \quad \alpha = -0.57, \quad m_{H^\pm} = (654 \cdots 804) \text{ GeV}
 \end{align*} \]

- keep in mind: the 2HDM contains **a lot of free parameters**

 - scanning through the parameter space is possible

- chosen parameter points respect **several constraints**:

 - theoretical (boundedness from below, tree-level unitarity, global minimum)
 - experimental (S/T/U parameters, lower bound on m_{H^\pm}, \ldots)
Numerical Analysis (II)

\[m_h = 125.09 \text{ GeV}, \quad m_H = 742.84 \text{ GeV} \]
\[m_A = 700.13 \text{ GeV}, \quad m_{12} = 440.57 \text{ GeV} \]
\[\tan \beta = 1.46, \quad \alpha = -0.57 \]

- pOS: “on-shell pinched”
- p*: “p*-pinched”
- KOSY: gauge-dependent scheme

Superscripts “o”, “c”: definition over CP-odd / charged sectors, resp.

Relative size of NLO corrections:

\[\Delta \Gamma = \frac{\Gamma_{NLO} - \Gamma_{LO}}{\Gamma_{LO}} \]
Numerical Analysis (II)

- for pinched schemes: NLO corrections are moderate (up to 20%)
- relatively large difference in finite parts → missing higher orders
 (for full analysis: rescale the parameters → future work)

\[m_h = 125.09 \text{ GeV}, \quad m_H = 742.84 \text{ GeV} \]
\[m_A = 700.13 \text{ GeV}, \quad m_{12} = 440.57 \text{ GeV} \]
\[\tan \beta = 1.46, \quad \alpha = -0.57 \]

- pOS: “on-shell pinched”
- p*: “p*-pinched”
- KOSY: gauge-dependent scheme

superscripts “o”, “c”: definition over CP-odd / charged sectors, resp.

relative size of NLO corrections:

\[\Delta \Gamma = \frac{\Gamma_{\text{NLO}} - \Gamma_{\text{LO}}}{\Gamma_{\text{LO}}} \]
Numerical Analysis (III)

scan over large parameter ranges

- proc: process-dependent
- pOS: “on-shell pinched”
- p*: “p*-pinched”
- KOSY: gauge-dependent scheme

superscript “c”: definition over charged sector

relative size of NLO corrections:

\[\Delta \Gamma = \frac{\Gamma_{\text{NLO}} - \Gamma_{\text{LO}}}{\Gamma_{\text{LO}}} \]
Numerical Analysis (III)

- process-dependent scheme: **huge** NLO corrections (unsuitable)
- pinched schemes: well-behaving for **large parameter ranges**

Relative size of NLO corrections:

\[
\Delta \Gamma = \frac{\Gamma_{\text{NLO}} - \Gamma_{\text{LO}}}{\Gamma_{\text{LO}}}
\]

- proc: process-dependent
- pOS: “on-shell pinched”
- \(p^*\): “\(p^*\)-pinched”
- KOSY: gauge-dependent scheme

superscript “c”: definition over charged sector

scan over large parameter ranges
Conclusions and Outlook

- gauge parameter independence: **key principle** for observables in QFTs
- certain renormalization schemes **spoil this independence** in the 2HDM
- a gauge-independent, process-independent and numerically stable scheme for $\delta \alpha$ and $\delta \beta$ was worked out **for the first time for the 2HDM**
- **full** electroweak one-loop corrections to 2HDM Higgs decays calculated
- combination with **state-of-the-art corrections from HDECAY**:
 development of new tool **2HDECAY**
- phenomenological studies (planned):
 - dependence of NLO corrections on **2HDM type**
 - analysis for certain **interesting limits** (decoupling, alignment, …)
 - effect of NLO electroweak corrections on **parameter space restriction**
Thanks!
Corrections to 2HDM Higgs Decays with 2HDECAY

M. Krause:

ITP, KIT
Backup slides
Motivation (III): Gauge Parameter Independence

- many phenomenologically interesting models are based on gauge theories
Motivation (III): Gauge Parameter Independence

- many phenomenologically interesting models are based on gauge theories

- gauge theories imply the need for fixing a gauge, e.g. general R_ξ gauge necessary for removal of redundant degrees of freedom

- the class of R_ξ gauges form an equivalence class of the gauge theory equations of motions, observables, ... must not depend on ξ
Motivation (III): Gauge Parameter Independence

- many phenomenologically interesting models are based on **gauge theories**

- gauge theories imply the need for fixing a gauge, e.g. general R_ξ gauge necessary for removal of redundant degrees of freedom

- the class of R_ξ gauges form an equivalence class of the gauge theory equations of motions, observables, ... **must not depend** on ξ

- higher-order calculations: cancellation of gauge dependences becomes very **intricate**

- in the 2HDM: unsuitable renormalization of mixing angles **spoils gauge parameter independence**
Gauge Invariance in QED

- consider Quantum Electrodynamics with spinors $\Psi(x)$, photon $A_\mu(x)$

- we demand invariance under local $U(1)$ gauge transformations

\[\Psi(x) \rightarrow e^{i\alpha(x)} \Psi(x) \]
Gauge Invariance in QED

- consider Quantum Electrodynamics with spinors $\Psi(x)$, photon $A_\mu(x)$

- we demand invariance under local U(1) gauge transformations
 \[\Psi(x) \to e^{i\alpha(x)} \Psi(x) \]

- proper inclusion of the transformation: covariant derivative
 \[D_\mu = \partial_\mu + ieA_\mu(x) \quad \Rightarrow \quad D_\mu \Psi(x) \to e^{i\alpha(x)} D_\mu \Psi(x) \]

- renormalizability: QED Lagrangian up to dim-4 operators
 \[\mathcal{L}_{\text{QED}} = \overline{\Psi} \left(i\gamma^\mu \partial_\mu - m \right) \Psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \]

 (m: fermion mass, $F_{\mu\nu}$: photon field strength tensor)
Gauge Dependences in QED

- quantization e.g. through the Faddeev-Popov method:

\[\mathcal{L}_{\text{QED}} = \bar{\Psi} \left(i \not{D} - m \right) \Psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{\xi} (\partial_{\mu} A_{\mu})(\partial_{\nu} A^{\nu}) \]

- introduction of gauge-fixing and Lagrangian

 ➔ preservation of unitarity
 ➔ cancellation of unphysical polarization degrees of freedom
Gauge Dependences in QED

- **quantization** e.g. through the *Faddeev-Popov* method:

\[\mathcal{L}_{\text{QED}} = \bar{\Psi} \left(i \slashed{D} - m \right) \Psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{\xi} (\partial^\mu A_\mu)(\partial_\mu A^\mu) \]

- introduction of **gauge-fixing** and Lagrangian

 ➔ preservation of **unitarity**

 ➔ cancellation of **unphysical polarization** degrees of freedom

- Feynman rules depend on **gauge-fixing parameter** \(\xi_V \):

\[\mu \quad \underbrace{\vphantom{\mu} \vphantom{\nu}}_{\text{dependence}} \nu \quad = \quad \frac{-i}{k^2 - m_V^2} \left[g_{\mu\nu} - (1 - \xi_V) \frac{k^\mu k_\nu}{k^2 - \xi_V m_V^2} \right] \]

 ➔ introduction of \(\xi_V \) dependence in (loop) calculations
many diagrams contain **UV divergences**, i.e. formally, we have

\[p^2 \rightarrow \infty \]
many diagrams contain **UV divergences**, i.e. formally, we have

\[p^2 \rightarrow \infty \rightarrow \infty \]

- use **dimensional regularization** \((d = 4 - 2\epsilon) \), isolate the divergences:

\[d = 4 - 2\epsilon \rightarrow \frac{1}{\epsilon} + \text{finite} \]
many diagrams contain UV divergences, i.e. formally, we have

\[p^2 \to \infty \rightarrow \infty \]

use dimensional regularization \((d = 4 - 2\epsilon)\), isolate the divergences:

\[d = 4 - 2\epsilon \rightarrow \frac{1}{\epsilon} + \text{finite} \]

remove the divergences via renormalization

idea: split ‘bare’ parameters into renormalized values and counterterms

\[m_i^2 \rightarrow m_i^2 + \delta m_i^2 \]

counterterms need to be fixed via renormalization conditions
Renormalization: On-Shell Conditions (I)

- consider **scalar field doublet** \((\phi_1, \phi_2)\)

- field strength renormalization:

\[
\left(\begin{array}{c}
\phi_1 \\
\phi_2
\end{array}\right)_0 = \sqrt{Z_\phi} \left(\begin{array}{c}
\phi_1 \\
\phi_2
\end{array}\right) \approx \left(\begin{array}{c}
1_{2\times 2} + \frac{\delta Z_\phi}{2}
\end{array}\right) \left(\begin{array}{c}
\phi_1 \\
\phi_2
\end{array}\right), \quad \frac{\delta Z_\phi}{2} = \left(\begin{array}{cc}
\frac{\delta Z_{\phi_1 \phi_1}}{2} & \frac{\delta Z_{\phi_2 \phi_1}}{2} \\
\frac{\delta Z_{\phi_1 \phi_2}}{2} & \frac{\delta Z_{\phi_2 \phi_2}}{2}
\end{array}\right)
\]

- two-point correlation function for the doublet with momentum \(p^2\):

\[
\hat{\Gamma}_\phi(p^2) := \left(\begin{array}{cc}
\hat{\Gamma}_{\phi_1 \phi_1}(p^2) & \hat{\Gamma}_{\phi_1 \phi_2}(p^2) \\
\hat{\Gamma}_{\phi_2 \phi_1}(p^2) & \hat{\Gamma}_{\phi_2 \phi_2}(p^2)
\end{array}\right)
\]

\[
= i \sqrt{Z_\phi} \left[p^2 1_{2\times 2} - D_\phi^2 + \Sigma_\phi(p^2) - \delta D_\phi^2 \right] \sqrt{Z_\phi} \approx i \left[p^2 1_{2\times 2} - D_\phi^2 + \hat{\Sigma}_\phi(p^2) \right]
\]

- mass matrices \(\leftrightarrow\) mass CTs \(\leftrightarrow\) renormalized self-energies

1PI self-energies

\[
i\Sigma(p^2) := \begin{array}{c}
\text{1PI}
\end{array} = \begin{array}{c}
\text{1PI}
\end{array} + \cdots
\]
Renormalization: On-Shell Conditions (II)

- **on-shell conditions:**
 - mixing of fields vanishes for \(p^2 = m_{\phi_i}^2 \)
 - masses \(m_{\phi_i}^2 \) are the real parts of the pole of the propagator
 - normalization: residue of the propagator at its pole equals \(i \)

- **fixation of diagonal mass counterterms:**
 \[
 \text{Re} \left[\delta D_{\phi_1 \phi_1}^2 \right] = \text{Re} \left[\Sigma_{\phi_1 \phi_1} (m_{\phi_1}^2) \right], \quad \text{Re} \left[\delta D_{\phi_2 \phi_2}^2 \right] = \text{Re} \left[\Sigma_{\phi_2 \phi_2} (m_{\phi_2}^2) \right]
 \]

- **fixation of field strength renormalization constants:**
 \[
 \delta Z_{\phi_1 \phi_1} = -\text{Re} \left[\frac{\partial \Sigma_{\phi_1 \phi_1} (p^2)}{\partial p^2} \right]_{p^2 = m_{\phi_1}^2}, \quad \delta Z_{\phi_2 \phi_2} = -\text{Re} \left[\frac{\partial \Sigma_{\phi_2 \phi_2} (p^2)}{\partial p^2} \right]_{p^2 = m_{\phi_2}^2}
 \]
 \[
 \delta Z_{\phi_1 \phi_2} = \frac{2}{m_{\phi_1}^2 - m_{\phi_2}^2} \text{Re} \left[\Sigma_{\phi_1 \phi_2} (m_{\phi_2}^2) - \delta D_{\phi_1 \phi_2}^2 \right], \quad \delta Z_{\phi_2 \phi_1} = \frac{2}{m_{\phi_2}^2 - m_{\phi_1}^2} \text{Re} \left[\Sigma_{\phi_1 \phi_2} (m_{\phi_1}^2) - \delta D_{\phi_1 \phi_2}^2 \right]
 \]

- **the specific form of the \(\delta D_{\phi_i \phi_j}^2 \) depends on the tadpole scheme**
Renormalization: General Tadpole Conditions

- renormalization conditions for the tadpole terms:

\[
\begin{align*}
 i T_{1/2} & - i \delta T_{1/2} = 0 \\
 i T_{H^0/h^0} & - i \delta T_{H^0/h^0} = 0
\end{align*}
\]

- conversion from gauge to mass basis:

\[
\begin{pmatrix}
 \delta T_1 \\
 \delta T_2
\end{pmatrix} =
\begin{pmatrix}
 c_\alpha & -s_\alpha \\
 s_\alpha & c_\alpha
\end{pmatrix}
\begin{pmatrix}
 \delta T_{H^0} \\
 \delta T_{h^0}
\end{pmatrix} =
\begin{pmatrix}
 c_\alpha \delta T_{H^0} - s_\alpha \delta T_{h^0} \\
 s_\alpha \delta T_{H^0} + c_\alpha \delta T_{h^0}
\end{pmatrix}
\]

- **purpose**: restoring the minimum conditions of the potential at NLO

- **practical effect**: no tadpole diagrams in NLO calculations
Renormalization: Standard Tadpole Scheme

- **standard scheme**: vevs are derived from the loop-corrected potential
 (e.g. in A. Denner: arXiv:0709.1075)

- vevs in the mass relations produce correct one-loop OS masses, e.g.
 \[m_W^2 = g^2 \frac{v^2}{4}, \quad m_{A_0}^2 = v^2 \left(\frac{m_{12}^2}{v_1 v_2} - \lambda_5 \right) \]

- tadpole terms appear explicitly in the bare mass matrices
 \[\Rightarrow \text{mass matrix counterterms contain the tadpole counterterms:} \]
 \[\delta D^2_{\phi} \approx \begin{pmatrix} \delta m_{\phi_1}^2 & 0 \\ 0 & \delta m_{\phi_2}^2 \end{pmatrix} + \begin{pmatrix} \delta T_{\phi_1 \phi_1} & \delta T_{\phi_1 \phi_2} \\ \delta T_{\phi_1 \phi_2} & \delta T_{\phi_2 \phi_2} \end{pmatrix} \]

- one-loop corrected potential is gauge-dependent
 \[\Rightarrow \text{vevs are gauge-dependent} \]
 \[\Rightarrow \text{mass counterterms become gauge-dependent} \]
alternative scheme: vevs represent the same minimum as at tree level

bare masses are expressed through gauge-independent tree-level vevs ➔ mass CTs become gauge-independent

correct minimum conditions @NLO require a shift in the vevs

\[v_1 \rightarrow v_1 + \delta v_1, \quad v_2 \rightarrow v_2 + \delta v_2 \]

fixation of the shifts by applying the tadpole conditions:

\[
\begin{pmatrix}
\delta v_1 \\
\delta v_2
\end{pmatrix} =
\begin{pmatrix}
\frac{\delta T_{H^0}}{m_{H^0}^2} c_\alpha - \frac{\delta T_{h_0}}{m_{h_0}^2} s_\alpha \\
\frac{\delta T_{h_0}}{m_{H^0}^2} s_\alpha + \frac{\delta T_{h_0}}{m_{h_0}^2} c_\alpha
\end{pmatrix}
\]

the shifts translate into every CT, wave function renormalization constants and Feynman rules

alternative tadpole scheme worked out for the 2HDM
Renormalization: Alternative Tadpole Scheme

- **example:** *W* boson mass

\[m_W^2 = g^2 \frac{v^2}{4} \rightarrow m_W^2 + g^2 \frac{v_1 \delta v_1 + v_2 \delta v_2}{2} = m_W^2 + i \left(W^\pm \right)_H^0 W^\pm + i \left(W^\pm \right)_h^0 W^\pm \]

- **example:** coupling between Higgs and *Z* bosons

\[ig_{H^0 Z^0 Z^0} = \frac{ig^2}{2c_W^2} (c_\alpha v_1 + s_\alpha v_2) \quad , \quad ig_{H^0 h^0 Z^0 Z^0} = \frac{ig^2}{2c_W^2} \]

\[ig_{H^0 Z^0 Z^0} \rightarrow ig_{H^0 Z^0 Z^0} + \frac{ig^2}{2c_W^2} (c_\alpha \delta v_1 + s_\alpha \delta v_2) = ig_{H^0 Z^0 Z^0} + \left(\begin{array}{c} H^0 \\ \hline \\ \hline \\ Z^0 \end{array} \right)_{\text{trunc}} \]

- **effects** of the alternative tadpole scheme:
 - tadpole diagrams are added everywhere where they exist in the 2HDM
 - mass counterterms become *manifestly gauge-independent*
 - tadpole counterterms in the scalar sector are removed
Renormalization of the 2HDM (II)

- **no-go theorem** for the MSSM: a renormalization scheme for $\tan \beta$
 - may not be simultaneously
 - gauge-independent
 - process-independent
 - numerically stable (i.e. leads to moderate NLO corrections)

Renormalization: Scalar Mixing Angles

- approach by S. Kanemura et al.: connect the definition of α and β with the inverse propagator matrix

$$\left(\begin{array}{c} \phi_1 \\ \phi_2 \end{array} \right) \sim R_{\theta,0}^T \left(\begin{array}{c} \tilde{\phi}_1 \\ \tilde{\phi}_2 \end{array} \right) \approx R_{\delta \theta}^T R_{\theta}^T \sqrt{Z_\phi} R_{\theta} R_{\theta}^T \left(\begin{array}{c} \tilde{\phi}_1 \\ \tilde{\phi}_2 \end{array} \right) \approx \left(\begin{array}{c} 1 + \frac{\delta Z_{\phi_1 \phi_1}}{2} \\ \delta C_{\phi_2} + \delta \theta \end{array} \right) \left(\begin{array}{c} \delta^C_{\phi_2} - \delta \theta \\ 1 + \frac{\delta Z_{\phi_2 \phi_2}}{2} \end{array} \right) \left(\begin{array}{c} \phi_1 \\ \phi_2 \end{array} \right)$$

- mixing angle counterterms within the standard tadpole scheme:

$$\delta \alpha = \frac{1}{2 \left(m_{H^0}^2 - m_{h^0}^2 \right)} \text{Re} \left[\Sigma_{H^0 h^0} (m_{H^0}^2) + \Sigma_{H^0 h^0} (m_{h^0}^2) - 2 \delta T_{H^0 h^0} \right]$$

$$\delta \beta = - \frac{1}{2 m_{H^\pm}^2} \text{Re} \left[\Sigma_{G^\pm H^\pm} (m_{H^\pm}^2) + \Sigma_{G^\pm H^\mp} (0) - 2 \delta T_{G^\pm H^\mp} \right]$$

- it was shown analytically that Kanemura’s scheme introduces an intricate gauge-dependence in $\delta \alpha$ and $\delta \beta$

(M. Krause, Master’s thesis, Karlsruhe Institute of Technology, 2016)
we consider a fermion scattering process at one-loop QCD:

\[A_{\text{full}}(s, t, m_1, m_2) = A_{\text{box}}(s, t, m_1, m_2; \xi) + A_{\text{tri}}(t, m_1, m_2; \xi) + A_{\text{self}}(t; \xi) \]

the gauge dependences have to cancel within the individual topologies

\[s = (r_1 + p_1)^2 = (r_2 + p_2)^2 \]
\[t = (r_1 - r_2)^2 = (p_1 - p_2)^2 \]

\[\Rightarrow \text{rearrangement of the contributions is always possible} \]

\[\Rightarrow \text{rearrangement shows that all gauge dependences have self-energy-like or triangle-like form} \]

\[A_{\text{full}}(s, t, m_1, m_2) = \tilde{A}_{\text{box}}(s, t, m_1, m_2) + \tilde{A}_{\text{tri}}(t, m_1, m_2) + \tilde{A}_{\text{self}}(t) \]

\[A_{\text{tri}}(t, m_1, m_2; \xi) \rightarrow \tilde{A}_{\text{tri}}(t, m_1, m_2) + f_{\text{self}}(t; \xi) \]

etc.
Pinch Technique: Introduction (II)

- determination of the gauge-dependent contributions: “pinching”

- main idea: trigger the **elementary Ward identity** for the loop momentum

\[
\bar{k} = (\bar{k} + \bar{\phi} - \bar{m}) - (\bar{\phi} - \bar{m}) = S^{-1}(k + p) - S^{-1}(p)
\]

- right expression: vanishes OS between spinors

- left expression: **cancels** (“pinches out”) an **internal fermion** propagator

\[
k \equiv S^{-1}(p_2 + k) - S^{-1}(p_2)
\]
Pinch Technique: Results (I)

- (almost) all pinch contributions are proportional to $(1 - \xi)$

- the non-pinched contributions are equivalent to diagrams calculated in Feynman-‘t Hooft gauge, i.e. for $\xi \equiv 1$

- the pinch contributions are self-energy like, i.e. functions of only t
 ➔ reallocation of pinch contributions to the gluon self-energy possible
Pinch Technique: Results (II)

- sum of all pinch contributions ➔ cancellation of gauge dependences

\[
\begin{align*}
& g_s^2 t (1 - \xi)^2 \int k \frac{k^\mu k'^\nu}{k^4 (k+q)^4} & & g_s^2 t (1 - \xi) \int k \frac{k^\mu k'^\nu}{k^4 (k+q)^2} & & g_s^2 t (1 - \xi) \int k \frac{q^\mu}{k^4} & & g_s^2 t (1 - \xi) \int k \frac{q^\mu}{k^2} \\
& i \Sigma_{\text{box}}^\mu & & t \frac{C_A}{2} & & 0 & & -t C_A & & 0 \\
& i \Sigma_{\text{tri1}}^\mu & & 0 & & 0 & & 0 & & C_A - 2 C_f \\
& i \Sigma_{\text{tri2}}^\mu & & -t C_A & & 2 C_A & & 2 t C_A & & -2 C_A \\
& i \Sigma_{\text{self,q}}^\mu & & 0 & & 0 & & 0 & & 2 C_f \\
& i \Sigma_{\text{self,g}}^\mu & & t \frac{C_A}{2} & & -2 C_A & & -t C_A & & C_A \\
& \text{Sum} & & 0 & & 0 & & 0 & & 0 \\
\end{align*}
\]

\(q^2 \equiv t \)

- main results from the application of the pinch technique:
 - demonstration of intricate cancellation of gauge dependences
 - cancellation is not accidental, but follows from Ward identities

\(C_A, C_f \) : Casimir operators
Gauge-Independent Self-Energies via PT

- all pinch contributions are self-energy-like
 ➔ **reallocate** pinch contributions to the gluon self-energy

- the pinched self-energy is equivalent to the one evaluated for $\xi \equiv 1$
after the cancellation of all gauge dependences
 ➔ Feynman-‘t Hooft-gauge is a **special gauge choice**

Interesting properties of the pinched gluon self-energy:

- analogy to the gluon self-energy given by the **Background Field Method**
- **uniquely defined** by the pinch technique framework
- manifestly **gauge-independent** ➔ allows for gauge-independent **counterterms**
- obeys **QED-like Ward identities** instead of complicated Slavnov-Taylor identities

[for more details cf. e.g. D. Binosi, J. Papavassiliou, Phys. Rep. 479 (2009) 1]
Applications of the Pinch Technique

- the pinch technique can be applied to e.g. the SM, MSSM, (N)2HDM, …

- for consistency: tadpole diagrams have to be taken into account → “alternative tadpole scheme” is needed (cf. part II of the talk)

- applications of the pinched self-energies:
 - definition of gauge-independent counterterms (cf. part III of the talk)
 - construction of QED-like Ward identities for e.g. QCD
 - gauge-independent definition of electroweak parameters
 - consistent resummation for resonant transition amplitudes
 - extraction of gauge-independent part of BFM self-energies

Implementation: 2HDECAY (I)

2HDM „electroweak Lagrangian“

Model file
FeynArts

Processes, e.g.
Feynman rules

Amplitudes
\[A = \langle f | S | i \rangle \]

Analytically
FeynCalc

Decay Widths
\[\Gamma \rightarrow |A|^2 \]

@1-loop

2HDECAY
Full result

HDECAY
QCD, off-shell, loop-induced

Python

FORTRAN
Implementation: 2HDECAY (I)

2HDECAY: “2HDM HDECAY“
A program for the calculation One-Loop Electroweak Corrections to Higgs Decays in the Two-Higgs-Doublet Model Including State-of-the-Art QCD Corrections

Implementation: 2HDECAY (II)

List of input files

$2HDECAY/\text{Input}$

2HDECAY.py

$2HDECAY$

HDECAY (minimal run)

$2HDECAY/\text{HDECAY}$

electroweakCorrections

$2HDECAY$

HDECAY

$2HDECAY/\text{HDECAY}$

Iterate over all input files

List of output files

$2HDECAY/\text{Results}$

$m_c(\text{OS})$, $m_b(\text{OS})$

Numerical Analysis (II)

\[m_h = 125.09 \text{ GeV}, \quad m_H = 742.84 \text{ GeV} \]
\[m_A = 700.13 \text{ GeV}, \quad m_{12} = 440.57 \text{ GeV} \]
\[\tan \beta = 1.46, \quad \alpha = -0.57 \]

- proc: process-dependent
- pOS: “on-shell pinched”
- p*: “p*-pinched”
- KOSY: gauge-dependent scheme

superscripts “o”, “c”: definition over CP-odd / charged sectors, resp.

\[\Delta \Gamma = \frac{\Gamma_{NLO} - \Gamma_{LO}}{\Gamma_{LO}} \]
kinks: **thresholds** for certain mass configurations

process-dependent scheme is often **unsuitable** (large NLO corrections)

\[
\Delta \Gamma = \frac{\Gamma_{\text{NLO}} - \Gamma_{\text{LO}}}{\Gamma_{\text{LO}}}
\]

\[m_h = 125.09 \text{ GeV}, \quad m_H = 742.84 \text{ GeV}\]
\[m_A = 700.13 \text{ GeV}, \quad m_{12} = 440.57 \text{ GeV}\]
\[\tan \beta = 1.46, \quad \alpha = -0.57\]
Numerical Analysis (II)

- Kinks: **thresholds** for certain mass configurations
- Process-dependent scheme is often **unsuitable** (large NLO corrections)

\[m_h = 125.09 \text{ GeV}, \quad m_H = 742.84 \text{ GeV} \]
\[m_A = 700.13 \text{ GeV}, \quad m_{12} = 440.57 \text{ GeV} \]
\[\tan \beta = 1.46, \quad \alpha = -0.57 \]

\[\Delta \Gamma = \frac{\Gamma_{NLO} - \Gamma_{LO}}{\Gamma_{LO}} \]

proc: process-dependent

pOS: “on-shell pinched”

p*: “p*-pinched”

KOSY: gauge-dependent scheme

Superscripts “o”, “c”: definition over CP-odd / charged sectors, resp.
Numerical Analysis (IV)

- for LO approaching zero, $\Delta \Gamma$ may become large (**numerical instability**)
- numerical instability is “artificial” (**no** problem of renormalization scheme)

\[
\Delta \Gamma = \frac{\Gamma_{\text{NLO}} - \Gamma_{\text{LO}}}{\Gamma_{\text{LO}}}
\]

- proc: process-dependent
- pOS: “on-shell pinched”
- p*: “p*-pinched”
- KOSY: gauge-dependent scheme

superscript “c”: definition over charged sector

scan over large parameter ranges