New model for transmission probabilities of membrane bellows

Marcel Krause
Institute for Experimental Nuclear Physics (IEKP), Karlsruhe Institute of Technology (KIT)
Outline

- Principle of vacuum simulations
- Membrane bellows in vacuum simulations
- Membrane bellow analysis
- Variations of bellow parameters
Principle of vacuum simulations: method

- test particle Monte Carlo simulation for free molecular flow
 - Molflow+ and ProVac3D

- surfaces approximated by mesh
 - individual properties of each surface element:
 - sticking coefficient α_i
 - desorption probability and angular distribution $\cos^n(\Theta)$
 - diffuse (Lambertian) reflection

- particle tracking produces for each surface
 - number of desorptions D_i
 - number of hits H_i
 - number of adsorptions A_i
Principle of vacuum simulations: results

- **conductance**
 - desorbing and adsorbing surface \((\alpha_1 = 100\%) \) at entrance \(D_1, A_1 \)
 - adsorbing surface \((\alpha_E = 100\%) \) at exit \(A_E \)
 - conductance: flow times **transmission probability** \(w = A_E/D_1 \)

- **ratio of pressures**
 - number of hits \(H_i \) *normalized to surface area* \(F_i \)
 - **pressure ratio** of two surfaces: \(p_1/p_2 = H_1 \cdot F_2/H_2 \cdot F_1 \)
Membrane bellows in vacuum simulations

- Implementation of membrane bellows: membrane elements approximated by mesh
- Entrance and exit tube surfaces: 30 each
- Surfaces for n membrane elements: $60 \cdot n$
 - Large increase in number of surface elements
 - Increase in simulation time by factors up to 500
 - Is it possible to replace the bellow with a straight tube?
Membrane bellow analysis: parameters

Simulation parameters:
- Tube diameter: $d = 100$ mm
- Tube length / tube diameter: **variable**
- Bellow length / tube length: **variable**
- Bellow height / tube diameter: **fixed**
- Width of single bellow element: **fixed**

Monte Carlo data:
- Number of desorptions D_1
- Number of adsorptions A_E

Analysis of simulation data:
- Transmission probability
 $$w(L_B, L_T) = \frac{A_E}{D_1}$$
Membrane bellow analysis: results

- plot the transmission probability w over L_T / d and L_B / L_T (3D plot)

- L_B / L_T dependence seems to be linear:
 \[w \left(\frac{L_B}{L_T} \right) = c_1 + c_2 \cdot \frac{L_B}{L_T} \]

- L_T / d dependence seems to follow a form given by K. Jousten:
 \[w \left(\frac{L_T}{d} \right) = c_1 \cdot \frac{1+c_2 \cdot \frac{L_T}{d}}{1+c_3 \cdot \frac{L_T}{d}+c_4 \cdot \left(\frac{L_T}{d} \right)^2} \]

 (note: the original form of the curve has different parameters, but the same functional dependence. See K. Jousten et al, Handbook of Vacuum Technology, p. 136 for details)

- the c_i are the parameters of the regressions
Membrane bellow analysis: results

- **combine both formulas** for the two degrees of freedom:

\[
\begin{align*}
 w \left(\frac{L_T}{d}, \frac{L_B}{L_T} \right) &= \left(A + B \cdot \frac{L_B}{L_T} \right) \cdot \frac{1 + \left(C + D \cdot \frac{L_B}{L_T} \right) \cdot \frac{L_T}{d}}{1 + \left(E + F \cdot \frac{L_B}{L_T} \right) \cdot \frac{L_T}{d} + \left(G + H \cdot \frac{L_B}{L_T} \right) \cdot \left(\frac{L_T}{d} \right)^2}
\end{align*}
\]

- \{A, ..., H\} are the **parameters of the regression** given by:

<table>
<thead>
<tr>
<th>parameter</th>
<th>value</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,9974</td>
<td>0,0016</td>
</tr>
<tr>
<td>B</td>
<td>0,0343</td>
<td>0,0017</td>
</tr>
<tr>
<td>C</td>
<td>0,3898</td>
<td>0,0151</td>
</tr>
<tr>
<td>D</td>
<td>-0,0131</td>
<td>0,0043</td>
</tr>
<tr>
<td>E</td>
<td>1,3994</td>
<td>0,0209</td>
</tr>
<tr>
<td>F</td>
<td>0,3419</td>
<td>0,0077</td>
</tr>
<tr>
<td>G</td>
<td>0,2976</td>
<td>0,0124</td>
</tr>
<tr>
<td>H</td>
<td>0,0936</td>
<td>0,0068</td>
</tr>
</tbody>
</table>
Analytical analysis of transmission probability

- consider the case without bellows, i.e. straight tubes:

\[w \left(\frac{L_T}{d}, 0 \right) = A \cdot \frac{1 + C \cdot \frac{L_T}{d}}{1 + E \cdot \frac{L_T}{d} + G \cdot \left(\frac{L_T}{d} \right)^2} \]

- for very long tubes, this becomes:

\[w \left(\frac{L_T}{d}, 0 \right) \bigg|_{(L_T/d) \to \infty} \rightarrow \frac{A \cdot C}{G} \cdot \left(\frac{L_T}{d} \right)^{-1} \approx (1.306 \pm 0.074) \cdot \left(\frac{L_T}{d} \right)^{-1} \]

- note that this is in accordance with the formula given by K. Jousten (see K. Jousten et al, Handbook of Vacuum Technology, p. 136 for details), where we have for a straight circular tube:

\[w \left(\frac{L_T}{d} \right) \bigg|_{(L_T/d) \to \infty} \rightarrow \frac{4}{3} \cdot \left(\frac{L_T}{d} \right)^{-1} \]

- for any arbitrary bellow, the transmission probability will tend to zero with increasing length:

\[w \left(\frac{L_T}{d}, \frac{L_B}{L_T} \right) \bigg|_{(L_T/d) \to \infty} \rightarrow 0 \]
Analytical analysis of transmission probability

- for very short tubes, the following limit applies:

\[
 w \left(\frac{L_T}{d}, 0 \right) \bigg|_{(L_T/d) \to 0} \longrightarrow A \cdot \left[1 - (E - C) \cdot \frac{L_T}{d} \right] \\
 \approx (0.997 \pm 0.002) \cdot \left[1 - (1.010 \pm 0.026) \cdot \frac{L_T}{d} \right]
\]

- note that this is in accordance with the formula given by K. Jousten (see K. Jousten et al, Handbook of Vacuum Technology, p. 136 for details), where we have for a straight circular tube:

\[
 w \left(\frac{L_T}{d} \right) \bigg|_{(L_T/d) \to 0} \longrightarrow 1 - \frac{L_T}{d}
\]
Replacement of bellows

- **aim:** replace a **bellow** with fixed design parameters with a **straight tube** with different design parameters, but with the **same** transmission probability

- for a **bellow** with fixed L_B / L_T and L_T / d, the transmission probability can be calculated with the **regression results:**

$$ w_B \left(\frac{L_T}{d}, \frac{L_B}{L_T} \right) = \left(A + B \cdot \frac{L_B}{L_T} \right) \cdot \frac{1+\left(C+D \cdot \frac{L_B}{L_T}\right) \cdot \frac{L_T}{d}}{1+(E+F \cdot \frac{L_B}{L_T}) \cdot \frac{L_T}{d}+(G+H \cdot \frac{L_B}{L_T}) \cdot \left(\frac{L_T}{d}\right)^2} $$ (1)

- the formula for straight tubes can be solved for L_T / d:

$$ w_0 \left(\frac{L_T}{d}, 0 \right) = A \cdot \frac{1+C \cdot \frac{L_T}{d}}{1+E \cdot \frac{L_T}{d}+G \cdot \left(\frac{L_T}{d}\right)^2} $$

$$ \Leftrightarrow $$

$$ \frac{L_T}{d} = \frac{A \cdot C - w_0 \cdot E + \sqrt{(A \cdot C - w_0 \cdot E)^2 + 4w_0 \cdot G \cdot (A - w_0)}}{2 \cdot w_0 \cdot G} $$

$$ \Rightarrow \left(\frac{L_T}{d} \right)^* = \frac{A \cdot C - w_B \cdot E + \sqrt{(A \cdot C - w_B \cdot E)^2 + 4w_B \cdot G \cdot (A - w_B)}}{2 \cdot w_B \cdot G} $$ (2)
Replacement of bellows

- procedure for replacing bellows with straight tubes:
 - calculate the transmission probability w_B for the bellow with design parameters L_B / L_T and L_T / d with Eq. (1)
 - with this w_B, calculate the new length $(L_T / d)^*$ with help of Eq. (2)
 - replace the bellow in the simulation with a straight tube with design parameter $(L_T / d)^*$

- this procedure has been tested for a few bellows with different design parameters
 - error below few percent
Bellow parameter variations: parameters

- **simulation parameters:**
 - tube diameter: $d = 100$ mm
 - tube length / tube diameter: fixed
 - bellow length / tube length: fixed
 - bellow height / tube diameter: variable
 - width of single bellow element: variable

![Diagram of bellow parameters](image-url)
Bellow parameter variations: h / d results

- variation of h / d changes the transmission probability **considerably** when the height tends to zero (i.e. the bellow becomes a straight tube)
- in the **regime of normal bellow heights** (i.e. industrial ones), the transmission probability changes only **in the order of a few percent**
 - h / d variance is negligible for industrial bellow designs
one finds a **minimum** in the transm. prob. p for angles α **between 50°-60^\circ**

- for **small angles**: bellow acts as nearly straight tube $\Rightarrow w$ increases
- for **large angles**: multiple reflections in one bellow element; overall particle reflection becomes more uniform $\Rightarrow w$ increases
- for angles **between 50°-60^\circ**: bellow surfaces facing the desorption area have perfect angle for direct reflection of the particles to the source $\Rightarrow w$ decreases to a minimum
Conclusion

- a **wide range** of bellow design parameters have been simulated

- a **numerical model for transmission probabilities** has been found and is **in concordance with analytical and numerical solutions** in standard text books

- a **procedure for replacing bellows with straight tubes** for simulations has been worked out

- **variations** in bellow widths and heights **have no significant effect** (for standard bellow parameters)
IEKP, KIT
M. Krause: New model for transmission probabilities of membrane bellows
Back-up slides
Transport and Pumping Sections

Differential Pumping Section (DPS)
- active pumping: 4 TMPs
- tritium retention: 10^5
- magnetic field: 5.6 T

Cryogenic Pumping Section (CPS)
- based on cryo-sorption
- tritium retention: $>10^7$
- magnetic field: 5.6 T

O. Kazachenko et al., NIM A 587 (2008) 136
F. Eichelhardt et al, Fusion Science and Technology 54 (2008) 615
The Karlsruhe Tritium Neutrino Experiment

Sensitivity on $m(\nu_e)$:

$2 \text{ eV/c}^2 \rightarrow 0.2 \text{ eV/c}^2$

The KATRIN collaboration

- **objective:** measure eff. neutrino mass with electrons from tritium β-decay
- **international collaboration** from 5 countries (D, US, CZ, RUS, UK)
- ~ 130 scientists
The KATRIN Setup - Overview

Tritium source

^3H

β-decay

e^-

$10^{10} \text{ e}^-/\text{s}$

$E = 18.6 \text{ keV}$

^3He

Pre spectrometer

$E > 18.3 \text{ keV}$

$\Delta E = 0.93 \text{ eV}$

e^-

$10^3 \text{ e}^-/\text{s}$

Spectrometer

e^-

$1 \text{ e}^-/\text{s}$

Detector

e^-

T_2 flow:

pressure:

$1.9 \text{ mbar} \cdot \ell/\text{s}$

$3.4 \times 10^{-3} \text{ mbar} \ (T_2)$

$<10^{-14} \text{ mbar} \cdot \ell/\text{s}$

$\sim 10^{-11} \text{ mbar} \ (H_2)$
Membrane bellows in the KATRIN experiment

Differential Pumping Section (DPS)
- active pumping: 4 TMPs
- tritium retention: 10^5
- magnetic field: 5.6 T

Cryogenic Pumping Section (CPS)
- based on cryosorption
- tritium retention: $>10^7$
- magnetic field: 5.6 T

O. Kazachenko et al., NIM A 587 (2008) 136
F. Eichelhardt et al, Fusion Science and Technology 54 (2008) 615
Bellow parameter variations: \(b / d \) results

- variation of bellow width \(b / d \) changes the transmission probability only in the order of a few percent
 \[\Rightarrow b / d \text{ variance is negligible} \]