

Vacuum Simulations of the KATRIN Experiment

Marcel Krause (KATRIN collaboration)

Institute of Experimental Nuclear Physics

liquid nitrogen coled baffle Pl Coled baffle Coled baffle

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

31.03.2014

The Karlsruhe Tritium Neutrino Experiment

The KATRIN collaboration

- objective: measure eff. neutrino mass with electrons from tritium β -decay
- international collaboration from 5 countries (D, US, CZ, RUS, UK)
- ~ 130 scientists

The KATRIN Setup - Overview

O. Kazachenko et al., NIM A 587 (2008) 136

F. Eichelhardt et al, Fusion Science and Technology 54 (2008) 615

Vacuum simulations of KATRIN setup

Demanding vacuum requirements need accurate simulations

- Optimization of vacuum setup
- Monitoring of vacuum performance (interpretation of measured pressure)

Accuracy vs. optimization of simulation time

- Detailed simulations very time consuming
- Saving time for membrane bellows
- Accuracy: emission characteristics of arbitrary gas sources and coupled devices

KATRIN specific simulations

- Tritium suppression factor in **DPS** & CPS
- Simulation of the Main Spectrometer (see next talk by J. Wolf)

Vacuum simulations: method

Test particle Monte Carlo simulation for free molecular flow

Molflow+ and ProVac3D

Surfaces approximated by mesh

- Individual properties of each surface element:
 - Sticking coefficient α_i
 - Desorption probability and angular distribution $\cos^{n}(\Theta)$
 - Diffuse (Lambertian) reflection

Particle tracking produces for each surface

- Number of desorptions D_i
- Number of hits H_i
- Number of adsorptions A_i

Vacuum simulations: results

Conductance

- Desorbing and adsorbing surface ($\alpha_1 = 100\%$) at entrance D_1 , A_1
- Adsorbing surface ($\alpha_E = 100\%$) at exit A_E
- Conductance: flow times **transmission probability** $w = A_E/D_1$

Effective pumping speed

- Desorbing and adsorbing surface F_1 ($\alpha_1 = 100\%$) at entrance D_1 , A_1
- Adsorbing surfaces of pumps ($\alpha_P < 100\%$) at exit ΣA_P
- Pumping speed: flow times **pumping probability** $w = \sum A_E / D_1$

$$S(M) = \frac{1}{4} \cdot \bar{c}_{\mathrm{M}} \cdot F_1 \cdot w$$

Ratio of pressures

- Number of hits H_i normalized to surface area F_i
- **Pressure ratio** of two surfaces: $p_1/p_2 = H_1 \cdot F_2/H_2 \cdot F_1$

KATRIN example: DPS suppression factor for T₂

Objective: determine the tritium suppression factor of the DPS

- **Suppression factor**: $w = A_E/D_1$
- Problems:
 - membrane bellows → long simulation time
 - WGTS beaming characteristics: gas source not a $cos(\Theta)$ desorption
 - DPS → CPS beaming characteristics
 - Define proper interface between subsequent components

- Objective: determine the difference of transmission probabilities for tubes with and without membrane bellows -> save computation time
- Important for KATRIN: are the bellows of the DPS negligible?

If not negligible, can the bellow be **approximated with a smaller tube**?

Analysis of simulation data:

- transmission probability: $w(L_{\rm B}, L_{\rm T}) = \frac{A_{\rm E}}{D_1}$
- difference of transmission probabilities with and without bellow:

$$\Delta = \frac{w(L_{\rm B}, L_{\rm T}) - w(0, L_{\rm T})}{w(0, L_{\rm T})}$$

Simulation results for wide variation of the simulation parameters

Benchmark analysis for fixed tube length / diameter value $L_T / D = 4.0$

Measure simulation time for 10⁶ adsorptions at end surface of tube

If bellow is **not negligible**, replace it with **smaller tube**

Important for KATRIN: analysis has shown that bellows in DPS beam pipes are negligible → 7 to 8 weeks saved computation time!

Future work:

- double the range of simulation parameters
- quantify the dependences of transmission probability differences
- determine the influence of bellow height / diameter ratio
- determine the influence of the number of bellow segments

DPG Dresden, 31.03.2014

Radiation characteristics of arbitrary gas sources

■ Objective: determine emission characteristics of arbitrary gas sources
→ save computation time, increase accuracy of simulated gas sources

Example for KATRIN: recreate the gas flow from the WGTS into the DPS with simple surfaces to save computation time

Radiation characteristics of arbitrary gas sources

Method:

- gas source emits particles into test dome with $\alpha = 100\%$
- measure number of adsorptions in dependence of angle Θ

Radiation characteristics of arbitrary gas sources

Molflow supports emission characteristics in powers of cosine functions
 Suitable fit function:
 WGTS end pipe

$$f(\Theta) = \sum_{i=1} c_i \cdot \cos^{n_i} \Theta$$

- Fit gives parameters c_i and n_i
- Recreation of gas source in Molflow by superimposing many transparent circular gas sources with n_i from fit

+

COS^{1.1}

DPG Dresden, 31.03.2014

COS^{262.7}

Simulation of the DPS suppression factor for T₂

■ Objective: determine the tritium suppression factor of the DPS
→ comparison with experimental data shows reliability of simulation

■ Membrane bellow analysis → **bellows** in beam pipes **negligible**

Radiation characteristics analysis \rightarrow **simplified gas source** implemented

Simulation of the DPS suppression factor for T₂

Simulations with five different gas sources:

- WGTS end pipe
- transparent circle with cosine-fit emission from radiation analysis
- transparent circle with cosine emission
- "black" circle with cosine emission
- "gray" circle with cosine-fit emission from radiation analysis
- Preliminary result: difference between transmission probabilities for "black" and WGTS-like emission is one order of magnitude
 → emission characteristic is important for accuracy

Future work:

- Simulations for all gas sources with ~1000 adsorptions on end surface
- Comparison of transmission probabilities for **different gas sources**
- Check of reliability of the radiation analysis
- Comparison with **experimental data**

Conclusion

- Membrane bellow analysis: useful for vacuum simulations of all kinds → saves a lot of computation time
- Radiation characteristics analysis: recreation or simplification of complex gas sources
 - \rightarrow saves a lot of computation time
 - \rightarrow increases the accuracy of the simulation
- Both analyses were used to simplify the DPS simulations
- Tritium suppression factor of KATRIN's DPS will be simulated for different gas sources
- The KATRIN main spectrometer has been simulated, results presented in next talk by J. Wolf

Thank you very much for your attention!

Backup slides

DPG Dresden, 31.03.2014

KATRIN Main Spectrometer

- **MAC-E Filter** principle \rightarrow precise energy analysis
- vacuum vessel on variable retarding potential (18.6 kV)
- high energy resolution: ΔE = 0.93 eV @ 18.6 keV
- size:
 - diameter: 10 m

. . .

- length: 23 m
- volume: 1240 m³
- inner surface: 1150 m² (including wire electrodes)
- stainless steel 200 to (316LN)
- vacuum (design values):
 - pressure: ~10⁻¹¹ mbar
 - outgassing rate: <10⁻¹² mbar·l/s·cm²
 - pumping speed: ~10⁶ l/s

dependence of difference of transmission coefficients is approximately linear over the ratio bellow length / tube length

DPG Dresden, 31.03.2014

dependence of difference of transmission coefficients is highly nonlinear in tube length / diameter

Example for KATRIN: benchmark analysis has shown that simulations with simplified gas source are twice as fast

Future work:

■ comparison of transmission probabilities between WGTS end pipe and simplified gas source → check of reliability

DPG Dresden, 31.03.2014

Simulations of the Main Spectrometer

- simplified model of the main spectrometer created (optimized discretization for Molflow)
- simulate pressure ratio p_{PP3} / p_{F9} of pressure gauges

Simulations of the Main Spectrometer

Simulations of the Main Spectrometer

- three possible gas sources for hydrogen and radon:
 - complete stainless steel tank
 - NEG strips in pump ports
 - diagonal virtual area in one pump port (cross section between port and vessel) for determination of pumping speeds
- three possible pump variations:
 - **NEG** pumps hydrogen with α_{NEG} between 0.5% and 3.5% (2.9% expected)
 - TMPs for hydrogen or radon with their respective α_{TMP}
 - baffles with α_{baffle} between 0% and 100% for radon

aims:

- find correlations between α_{baffle} , α_{NEG} and pressure ratios
- simulation of effective pumping speed of NEG, TMPs and baffles
- comparison with experimental ratios \rightarrow effective pumping speed
- simulate radon suppression factor

ratio of hit numbers in vacuum gauges ≈ ratio of pressures: p_{PP3} / p_{F9} gas: hydrogen

Calculation of the NEG pumping speed: $S = \frac{1}{4} \cdot \bar{c} \cdot A \cdot \frac{N_{\text{NEG}}}{N_{\text{dec}}}$

- $\bar{c}~$: mean molecular speed given by $\bar{c} = \sqrt{\frac{8k_{\rm B}T}{\pi M}} \label{eq:constraint}$
- A: desorption area (virtual area) $N_{\rm NEG}$: number of adsorptions in NEG strips $N_{
 m des}$: total desorption number

calculation of the NEG pumping speed: S = \$\frac{1}{4}\$ \cdot \$\vec{c}\$ \cdot A \cdot \$\frac{N_{\mathbf{NEG}}}{N_{\mathbf{des}}}\$
 gas: hydrogen

- main systematic uncertainty: estimation of outgassing rates
- many neglected surfaces: NEG cages in pump ports, electrodes in main vessel, ...
 - ➔ neglected outgassing sources
- three simulations with different outgassing properties for $\alpha_{NEG} = 2.5\%$
 - homogenous outgassing of tank and pump ports
 - no outgassing in pump ports
 - 2:1 ratio of outgassing between tank and pump ports
- simulated pressure ratios p_{PP3} / p_{F9} vary up to ~10%
 - ➔ high systematic uncertainties

ratio of hit numbers in vacuum gauges ≈ ratio of pressures: p_{PP3} / p_{F9}
 gas: radon

calculation of the pumping speed (TMP + Baffle): S = ¹/₄ · \bar{c} · A · $\frac{N_{\text{TMP}} + N_{\text{Baffle}}}{N_{\text{des}}}$ gas: radon

