

Silicon Strip Sensors for the Phase-2 Upgrade of CMS

DPG Aachen 2019

Tobias Barvich, Alexander Dierlamm, Umut Elicabuk, Jan-Ole Gosewisch, Ulrich Husemann, Marius Metzler, Thomas Müller, Anita Weddigen

Institut für Experimentelle Teilchenphysik (ETP)

CMS Phase-2 Outer Tracker Upgrade in a Nutshell

The Phase-2 Outer Tracker Modules

- New module concept with 2 sensors on top of each other
- 2 module types:

The Phase-2 Outer Tracker Modules

- New module concept with 2 sensors on top of each other
- 2 module types:
 - 2S (2 strip sensors)
 - PS (macro pixel + strip sensor)
- Sensor granularity decreases from center outwards

The Phase-2 Outer Tracker Modules

- New module concept with 2 sensors on top of each other
- 2 module types:
 - 2S (2 strip sensors)
 - PS (macro pixel + strip sensor)
- Sensor granularity decreases from center outwards
- Fluences decrease from center outwards
 - Expected maximum fluence for 2S region: $\Phi_{2S} \approx 3 \times 10^{14} n_{eq} \text{ cm}^{-2}$

Sensor R&D

- Most important parameters for sensors:
 - Resolution
 - Efficiency
- Resolution is determined by the sensor design (distance of strips)
- Sensor R&D studies focus on efficiency and thermal performance
- Studies performed with setups at ETP mainly focus on
 - Charge collection
 - Leakage current

Sensor R&D – Leakage Current

- I_{leak} ~ d_a (active sensor thickness)
- Source of noise and main source of heat dissipation (especially after irradiation)
- Methods for reducing leakage current during operation:

Cooling & annealing

Sensor R&D – Charge Collection

Irradiation Studies at ETP – Results from 2018

Irradiation Studies at ETP – Results from 2018

- Comparison of 200, 240 and
 300 µm material for
 - Φ_{2S} ≈ 3 x 10¹⁴ n_{eq}cm⁻²

V_{bias} = 600 V

- Signal of 200 µm material too low
- 240/300 µm provide similar signal and annealing characteristic at 600 V

Irradiation Studies at ETP – Results from 2018

- Comparison of 200, 240 and
 300 µm material for
 - Φ_{2S} ≈ 3 x 10¹⁴ n_{eq}cm⁻²
 - V_{bias} = 600 V
- Signal of 200 µm material too low
- 240/300 µm provide similar signal and annealing characteristic at 600 V
- Difference between neutron and proton irradiation

observed for thicker materials

Sensor R&D – Final Irradiation Campaign

- Results of our studies limit the range of the active thickness d_a:
 - 240 µm ≤ d_a ≤ 300 µm
- Final material needs to be qualified again
- 2 candidates remaining:
 - Thinned float-zone of 240 μ m \rightarrow thFZ240
 - Float-zone with active thickness of 290 μ m \rightarrow FZ290
- Particle type matters! fluences will correspond to the expected particle composition in the tracker

Sensor R&D – Campaign Status & Outlook

- Received over a 100 test sensors of each material in Nov 18 / Jan 19
 - Qualification and radiation campaign on-going
- Preliminary result for FZ290:
 - Sufficient signal at $\Phi_{2S} \approx 3 \times 10^{14} \text{ n}_{eq} \text{ cm}^{-2}$ and $V_{bias} = 600 \text{ V}$

Back Up

2 x 960 = 30208 0 x 1500 μm²

15

The Phase-2 Outer Tracker Sensors

2S:

- A = 10 x 10 cm²
- Strips: 2 x 1016 = 2032
- Pitch: 90 µm

PS-s:

- A = 5 x 10 cm²
- Strips: 2 x 960 = 1920
- Pitch: 100 µm

PS-p:

- A = 5 x 10 cm²
- Macro pixel: 32 x 960 = 30208
- Pixel size: 100 x 1500 µm²

Irradiation Campaign with FZ290 and thFZ240

Set	Neutrons 10 ¹⁴ n _{eq} /cm²	Protons 10 ¹⁴ n _{eq} /cm²	Total 10 ¹⁴ n _{eq} /cm²	Fraction n	Dose 23MeV kGy	Dose 24GeV kGy
Low outer	0.8	0.2	1	80%	30.8	6.8
Low inner	1.2	1.8	3	40%	271.2	55.2
Mid outer	2.4	0.6	3	80%	92.4	20.4
Mid inner	4	6	10	40%	904	184
Max outer	4.8	1.2	6	80%	154	34
Max inner	6	9	15	40%	1356	276

(max. nominal dose: 700kGy)

Sensor R&D – Leakage Current

Leakage current

- I_{leak} ~ d_a (active sensor thickness)
- Source of noise and main source of heat dissipation (especially after irradiation)
- Methods for reducing leakage current during operation:
 - Cooling & annealing

Sensor R&D – Signal vs. Noise

- Most important parameters for sensors: resolution & efficiency
- Studies concentrate on efficiency: charge collection vs. leakage current

