

DPG 2017: Front Side Biasing of Silicon Sensors

Felix Bögelspacher, Alexander Dierlamm, Marius Metzler, Thomas Müller, Pia Steck

Institut für Experimentelle Kernphysik (IEKP)

www.kit.edu

Periphery region between top side and backplane works like a resistor made of different p-doped layers (over-simplified!)

- Think of the periphery region between top side and backplane as a resistor made of different p-doped regions (over-simplified!)
- If you set the top side to a certain potential, the backplane is naturally set to a similar potential depending on the resistance of this "resistor"
 - → Voltage drop $\Delta U = I \cdot R_{Edge}$

Normal way of biasing a n-in-p sensor (back side bias)
 Front side bias

- FSB would facilitate the module assembly because 3 time-consuming working steps would be eliminated:
 - 1) Kapton tail attachment
 - 2) Kapton tail bonding
 - 3) Kapton tail encapsulation

- No significant difference of
 - current-voltage-characteristics (IV)
 - capacitance-voltage-characteristics (CV)

before irradiation

E However: ΔU clearly observable for fluences beyond 6e14 n_{ed}/cm²

Charge collection measurements also indicate the voltage drop

➔ lower seed signal with FSB

Systematic studies of edge resistivity (ER) on mini-strip sensors with our probe station setup

16 Marius Metzler - Front Side Biasing

Before irradiation: "ρ ~ T":

- Resistivity of intrinsic Si: $\rho = [q(n\mu_n + p\mu_p)]^{-1}$
- Carrier mobility of intrinsic Si: $\mu_p \sim T^{-2.3}$, $\mu_n \sim T^{-2.6}$

- "ρ ~ φ_{eq}":
 - Space-charge-limited current (SCL current)
 - emerging E-field reduces the current flow after irradiation

Name	Φ (n _{eq} /cm²)	R (Ω)	A _{Per} (cm²)
@-20°C:			
KIT_Test_14	-	92	0.621
KIT_Test_15	1e15p	1M	0.621

- After irradiation
 - "ρ ~ 1/T":
 - Trapping probability decreases with rising temperature:

 $P(\tau) \sim 1/T$ [1]

➔ E-field decreases

[1] G. Kramberger et al. *Effective trapping time of electrons and holes in different silicon materials irradiated with neutrons, protons and pions.* URL: http://www-f9.ijs.si/~zavrtani/mi_02_c.pdf

IV. Approximating the Voltage Drop of a 2S Sensor

IV. Approximating the Voltage Drop for a 2S Sensor

Most important question: <u>How big is the voltage drop of a 2S sensor?</u>
 This can be approximated by using

- the experimentally found resistivities of mini sensors $\rho_{mini sensor}$
- the 2S periphery area $A_{Per, 2S} = 3.846 \text{ cm}^2$
- the 2S leakage current using damage rate damage

rate $\alpha = \Delta I/(V\phi_{eq}) = 4 \cdot 10^{-17}$ A/cm:

•
$$\phi_{eq} = 6e14 n_{eq}/cm^2$$

- T = -20 °C
- 2 weeks annealing @RT
- V_{Bias} = 600 V

→ <u>I = 1.1 mA</u>

IV. Approximating the Voltage Drop for a 2S Sensor

Name	Fluenz	R (Ω)	A _{Per} (cm²)	L (µm)	ρ (Ω cm)	R ₂₅ (Ω)	ΔU@1.1 mA	ΔW@1.1 mA
@20°C:								
KIT_Test_14	-	124	0.621	240	3210	20	0.022	0.00007
KIT_Test_21	1e13p	1630	0.621	240	42198	263	0.290	0.00095
MaPSA_std_9_2	-	694	0.406	200	14097	88	0.097	0.00032
@-20°C:								
KIT_Test_14	-	92	0.621	240	2382	15	0.016	0.00005
KIT_Test_21	1e13p	14415	0.621	240	373183	2328	2.561	0.00841
KIT_Test_16	6e14p	914000	0.621	240	23662089	147630	162.393	0.53294
KIT_Test_15	1e15p	1463210	0.621	240	37880312	236339	259.973	0.85318

Voltage drop and power loss becomes too severe for 2S sensor

V. Summary

23 3/13/17 Marius Metzler – Front Side Biasing

V. Summary

- Voltage drop becomes significant for high fluences
- Approximated voltage drop for 2S sensor becomes too severe
 - ➔ this needs to be experimentally verified!
- We used sensors with standard periphery design
 - ➔ there's possible room for improvement
- Even if FSB doesn't meet the requirements for CMS it might be interesting for other detectors
 - ➤ LHCb will probably use front-side-biased sensors (expected fluence here: ~ 1e13 n_{eq}/cm² - 1e14 n_{eq}/cm²^[2])

[1] A. Abba et al. *Study of prototype sensors for the Upstream Tracker Upgrade.* URL: https://cds.cern.ch/record/2137551/files/LHCb-PUB-2016-007.pdf

Backup

25 3/13/17 Marius Metzler – Front Side Biasing

Name	Φ (n _{eq} /cm²)	R (Ω)	A _{Per} (cm²)	L (µm)	ρ (Ω cm)
@20°C:					
MaPSA_std_9_2	-	694	0.406	200	14097
KIT_Test_14	-	124	0.621	240	3210
KIT_Test_21	1e13p	1630	0.621	240	42198
@-20°C:					
MaPSA_std_9_2	-	581	0.406	200	11802
KIT_Test_14	-	92	0.621	240	2382
KIT_Test_21	1e13p	14415	0.621	240	373183
KIT_Test_16	6e14p	914000	0.621	240	23 · 10 ⁶
KIT_Test_15	1e15p	1 · 10 ⁶	0.621	240	$37 \cdot 10^6$
MaPSA_edge500_2_3	1e15p	$2 \cdot 10^6$	0.236	200	$28 \cdot 10^6$
MaPSA_edge350_2_3	1e15p	$4 \cdot 10^{6}$	0.214	200	51 · 10 ⁶

- Simulations of a 200 µm edge region support the results of the experimentally found data
 - \rightarrow an E-field emerges after irradiation that reduces the current flow

- E-field over x: shows an emerging E-field after irradiation
- Current over x: shows how the current is reduced by ~70% after irradiation

II. ALiBaVa Measurements

Board modulation allows switching back and forth between FSB and BSB while measuring CCE with the ALiBaVa setup

II. ALiBaVa Measurements: HPK Campaign

ER Measurements: Basic Idea

Therefore a new probe station measurement was implemented, which is able to control all those parameters and facilitates the data acquisition

III. ER Measurements: Basic Idea

■ BSB:
$$I_{BSB} = U_0/R_S$$

■ FSB: $U_E = I_{FSB}/R_E$
→ $I_{FSB} = U_0/(R_S + R_E) = U_0/(R_S + U_E/I_{FSB})$
→ $U_E = U_0 - I_{FSB}R_S$

