

Two-Loop Higgs Boson Mass Corrections

in the CP-Violating Next-to-Minimal Supersymmetric Standard Model (NMSSM)

arxiv:2106.06990

Nhung Dao, Martin Gabelmann, Margarete Mühlleitner, and Heidi Rzehak | September 29th 2021

8TH KSETA PLENARY WORKSHOP

 $M(H^{\circ}) = \pi \left(\frac{1}{137}\right)^{8} \sqrt{\frac{hc}{G}}$ $3987^{12} + 4365^{12} = 4472^{12}$ $\Omega(t) > 1$)+ (0}-, (2, - (

Outline

SUSY and the (SM-like) Higgs Boson Mass

2 One- and Two-Loop Corrections: Uncertainty Estimate

3 Two-Loop: Issue of Infra-Red (IR) Divergences

Outlook/Summary

SUSY and the (SM-like) Higgs Boson Mass One- and Two-Loop Corrections: Uncertainty Estimate Two-Loop: Issue of Infra-Red (IR) Divergen

Assumption: heavy new physics particle with mass m_{heavy} .

Perturbatively calculate vector/fermion/Higgs mass:

• Vector bosons:
$$\delta m_V^2 \propto m_V^2 \log \frac{m_{heavy}^2}{\mu^2}$$

protected by gauge symmetries, $m_V \to 0$
• Fermions: $\delta m_f \propto m_f \log \frac{m_{heavy}^2}{\mu^2}$
protected by chiral symmetry, $m_f \to 0$

• Higgs:
$$\delta m_h^2 \propto m_{\text{heavy}}^2 \log rac{m_{\text{heavy}}^2}{\mu^2}$$

which symmetry protects m_h ?

 \rightarrow SUSY

Later: in SUSY $m_{\text{heavy}} \rightarrow m_{\text{SUSY}}$ (scale where SUSY is broken) and $\delta m_h \xrightarrow{m_{\text{SUSY} \rightarrow 0}} 0$.

SUSY and the (SM-like) Higgs Boson Mass oo Nunc Dao, Martin Gabelmann, Margarete Mühlleitner, and Heidi Rzehak – Overview September 29th 2021 3/13

How is this different compared to non-SUSY BSM?

SM / non-SUSY BSM	SUSY
• m_h needs to be measured • unitarity: $m_h < 1 \text{ TeV}$ • $\Delta \rho_{SM} \propto \log \left(\frac{m_h^2}{m_Z^2}\right) + \frac{m_l^2}{m_Z^2}$ • $114 < m_h^{2009} < 154 \text{ GeV}$ [Gfitter] • $m_h^{2012} \approx 125 \text{ GeV}$	 <i>m_h</i> predicted perturbatively <i>m_h</i>(<i>m</i>_{SUSY}) function of SUSY particle masses and couplings constraints on SUSY particle masses/decays translate to Higgs boson mass prediction (and vice versa)

SUSY and the (SM-like) Higgs Boson Mass One- and Two-Loop Corrections: Uncertainty Estimate Two-Loop: Issue of Infra-Red (IR) Divergen 0000

How is this different compared to non-SUSY BSM?

SM / non-SUSY BSM	SUSY
• m_h needs to be measured • unitarity: $m_h < 1 \text{ TeV}$ • $\Delta \rho_{SM} \propto \log \left(\frac{m_h^2}{m_Z^2}\right) + \frac{m_l^2}{m_Z^2}$ • $114 < m_h^{2009} < 154 \text{ GeV}$ [Glitter] • $m_h^{2012} \approx 125 \text{ GeV}$	 <i>m_h</i> predicted perturbatively <i>m_h</i>(<i>m</i>_{SUSY}) function of SUSY particle masses and couplings constraints on SUSY particle masses/decays translate to Higgs boson mass prediction (and vice versa)

Test SUSY-relations at colliders:

 $m_h^{
m LHC} pprox 125 \pm 0.2 \, {
m GeV}$ [Atlas, CMS] $4 \qquad m_h(m_{
m SUSY} pprox 1 - 2 \, {
m TeV}) pprox 125 \pm 3 \, {
m GeV}$

Precision predictions required in order to study SUSY parameter space.

SUSY and the (SM-like) Higgs Boson Mass oo Nunc Dao, Martin Gabelmann, Margarete Mühlleitner, and Heidi Rzehak – Overview September 29th 2021 4/13

How is this different compared to non-SUSY BSM?

SM / non-SUSY BSM	SUSY
• m_h needs to be measured • unitarity: $m_h < 1 \text{ TeV}$ • $\Delta \rho_{SM} \propto \log \left(\frac{m_h^2}{m_Z^2}\right) + \frac{m_t^2}{m_Z^2}$ • $114 < m_h^{2009} < 154 \text{ GeV}$ [Gitter] • $m_h^{2012} \approx 125 \text{ GeV}$	 <i>m_h</i> predicted perturbatively <i>m_h</i>(<i>m</i>_{SUSY}) function of SUSY particle masses and couplings constraints on SUSY particle masses/decays translate to Higgs boson mass prediction (and vice versa)

Test SUSY-relations at colliders:

 $m_h^{LHC} pprox 125 \pm 0.2 \, {
m GeV}$ [Atlas, CMS] $4 m_h(m_{
m SUSY} pprox 1 - 2 \, {
m TeV}) pprox 125 \pm 3 \, {
m GeV}$

Precision predictions required in order to study SUSY parameter space.

How is this different compared to non-SUSY BSM?

SM / non-SUSY BSM	SUSY
• m_h needs to be measured • unitarity: $m_h < 1 \text{ TeV}$ • $\Delta \rho_{SM} \propto \log \left(\frac{m_h^2}{m_Z^2}\right) + \frac{m_t^2}{m_Z^2}$ • $114 < m_h^{2009} < 154 \text{ GeV}$ [Gitter] • $m_h^{2012} \approx 125 \text{ GeV}$	 <i>m_h</i> predicted perturbatively <i>m_h</i>(<i>m</i>_{SUSY}) function of SUSY particle masses and couplings constraints on SUSY particle masses/decays translate to Higgs boson mass prediction (and vice versa)

Test SUSY-relations at colliders:

 $m_h^{LHC} pprox 125 \pm 0.2 \, {
m GeV}$ [Atlas, CMS] 4 $m_h(m_{
m SUSY} pprox 1 - 2 \, {
m TeV}) pprox 125 \pm 3 \, {
m GeV}$

Precision predictions required in order to study SUSY parameter space.

SUSY and the (SM-like) Higgs Boson Mass oo Nunc Pao, Martin Gabelmann, Margarete Mühlleitner, and Heidi Rzehak – Overview September 29th 2021 4/13

The CP-Violating NMSSM

The Complex Next-to-Minimal Supersymmetric Standard Model

Singlet extension of the MSSM.

- Theoretically well-motivated (solves *μ* and little-hierarchy-problem).
- Rich phenomenology in the Higgs boson sector:

$$H_{d} = \begin{pmatrix} \frac{v_{d} + h_{d} + ia_{d}}{\sqrt{2}} \\ h_{d}^{-} \end{pmatrix}, H_{u} = e^{i\varphi_{u}} \begin{pmatrix} h_{u}^{+} \\ \frac{v_{u} + h_{u} + ia_{u}}{\sqrt{2}} \end{pmatrix}, S = \frac{e^{i\varphi_{s}}}{\sqrt{2}}(v_{s} + h_{s} + ia_{s})$$
mix to

 $h_1,h_2,h_3,h_4,h_5,$ G^0 (mass ordered) and $h^\pm,$ G^\pm

LHC measurements: h_1 or h_2 play the role of the Higgs boson h measured at LHC (h_1 or h_2 are "SM-like"). MSSM: no CPV at tree-level and always $h_1 = h$.

SUSY and the (SM-like) Higgs Boson Mass One- and Two-Loop Corrections: Uncertainty Estimate OO Nunq Dao, Martin Gabelmann, Margarete Mühlleitner, and Heidi Rzehak – Overview September 29th 2021 5/13

The CP-Violating NMSSM

The Complex Next-to-Minimal Supersymmetric Standard Model

- Singlet extension of the MSSM.
- Theoretically well-motivated (solves μ- and little-hierarchy-problem).
- Rich phenomenology in the Higgs boson sector:

$$H_{d} = \begin{pmatrix} \frac{v_{d} + h_{d} + ia_{d}}{\sqrt{2}} \\ h_{d}^{-} \end{pmatrix}, H_{u} = e^{i\varphi_{u}} \begin{pmatrix} h_{u}^{+} \\ \frac{v_{u} + h_{u} + ia_{u}}{\sqrt{2}} \end{pmatrix}, S = \frac{e^{i\varphi_{s}}}{\sqrt{2}} (v_{s} + h_{s} + ia_{s})$$
mix to

 $h_1,h_2,h_3,h_4,h_5,$ G^0 (mass ordered) and $h^\pm,$ G^\pm

LHC measurements: h_1 or h_2 play the role of the Higgs boson h measured at LHC (h_1 or h_2 are "SM-like"). MSSM: no CPV at tree-level and always $h_1 = h$.

SUSY and the (SM-like) Higgs Boson Mass One- and Two-Loop Corrections: Uncertainty Estimate OO Nunq Dao, Martin Gabelmann, Margarete Mühlleitner, and Heidi Rzehak – Overview September 29th 2021 5/13

The CP-Violating NMSSM

The Complex Next-to-Minimal Supersymmetric Standard Model

- Singlet extension of the MSSM.
- Theoretically well-motivated (solves μ- and little-hierarchy-problem).
- Rich phenomenology in the Higgs boson sector:

$$H_{d} = \begin{pmatrix} \frac{v_{d} + h_{d} + ia_{d}}{\sqrt{2}} \\ h_{d}^{-} \end{pmatrix}, H_{u} = e^{i\varphi_{u}} \begin{pmatrix} h_{u}^{+} \\ \frac{v_{u} + h_{u} + ia_{u}}{\sqrt{2}} \end{pmatrix}, S = \frac{e^{i\varphi_{s}}}{\sqrt{2}} (v_{s} + h_{s} + ia_{s})$$

mix to
$$h_{1}, h_{2}, h_{3}, h_{4}, h_{5}, G^{0} \text{ (mass ordered) and } h^{\pm}, G^{\pm}$$

LHC measurements: h_1 or h_2 play the role of the Higgs boson h measured at LHC (h_1 or h_2 are "SM-like"). MSSM: no CPV at tree-level and always $h_1 = h$.

SUSY and the (SM-like) Higgs Boson Mass One- and Two-Loop Corrections: Uncertainty Estimate OO Nunc Dao, Martin Gabelmann, Margarete Mühlleitner, and Heidi Rzehak – Overview September 29th 2021 5/13

 $(m_h^{\rm tree})^2 \approx m_Z^2 \cos^2 2\beta$

 \rightarrow SUSY connects scalar- with gauge- and Yukawa-sector!

• MSSM: $m_h^{\text{tree}} \le m_Z < 125 \, \text{GeV}$ 4

NMSSM: $\lambda < 0.7$ (assuming perturbative unitarity below m_{GUT})

 \rightarrow In either case: Higher-order corrections must shift m_h to the measured Higgs mass. At one-loop, the leading contributions to $\delta^{(1)}m_h^2$ from the top/stop sector are:

• $M_{\tilde{t}} = m_t + m_{\text{SUSY}} \Rightarrow$ in the SUSY-restoring limit: $\delta^{(1)} m_h^2 \xrightarrow{m_{\text{SUSY}} \to 0} 0$

• but we need $\delta m_h^2 pprox \mathcal{O}(20-40\,{
m GeV})$! ightarrow higher-orders required

 \rightarrow SUSY connects scalar- with gauge- and Yukawa-sector!

 $(m_h^{\text{tree}})^2 \approx m_Z^2 \cos^2 2\beta + \lambda v^2 \sin^2 2\beta$

• MSSM:
$$m_h^{ ext{tree}} \leq m_Z < 125 \, ext{GeV}$$
 /

NMSSM: $\lambda < 0.7$ (assuming perturbative unitarity below m_{GUT})

 \rightarrow In either case: Higher-order corrections must shift m_h to the measured Higgs mass. At one-loop, the leading contributions to $\delta^{(1)}m_h^2$ from the top/stop sector are:

•
$$M_{\tilde{t}} = m_t + m_{\text{SUSY}} \Rightarrow \text{ in the SUSY-restoring limit: } \delta^{(1)} m_h^2 \xrightarrow{m_{\text{SUSY}} \to 0} 0$$

• but we need $\delta m_h^2 \approx \mathcal{O}(20 - 40 \, \text{GeV}) \,! \rightarrow$ higher-orders required

 $\rightarrow \text{SUSY connects scalar- with gauge- and Yukawa-sector!}$

 $(m_h^{\text{tree}})^2 \approx m_Z^2 \cos^2 2\beta + \lambda v^2 \sin^2 2\beta$

• MSSM:
$$m_h^{ ext{tree}} \leq m_Z < ext{125}\, ext{GeV}$$
 \oint

NMSSM: $\lambda < 0.7$ (assuming perturbative unitarity below m_{GUT})

 \rightarrow In either case: Higher-order corrections must shift m_h to the measured Higgs mass. At one-loop, the leading contributions to $\delta^{(1)}m_h^2$ from the top/stop sector are:

•
$$M_{\tilde{t}} = m_t + m_{\text{SUSY}} \Rightarrow \text{ in the SUSY-restoring limit: } \delta^{(1)} m_h^2 \xrightarrow{m_{\text{SUSY}} \to 0} 0$$

• but we need $\delta m_h^2 \approx \mathcal{O}(20 - 40 \, \text{GeV}) \,! \rightarrow$ higher-orders required

 \rightarrow SUSY connects scalar- with gauge- and Yukawa-sector!

 $(m_h^{\text{tree}})^2 \approx m_Z^2 \cos^2 2\beta + \lambda v^2 \sin^2 2\beta$

• MSSM:
$$m_h^{ ext{tree}} \leq m_Z < ext{125}\, ext{GeV}$$
 \oint

NMSSM: $\lambda < 0.7$ (assuming perturbative unitarity below m_{GUT})

 \rightarrow In either case: Higher-order corrections must shift m_h to the measured Higgs mass. At one-loop, the leading contributions to $\delta^{(1)}m_h^2$ from the top/stop sector are:

• $M_{\tilde{t}} = m_t + m_{\text{SUSY}} \Rightarrow$ in the SUSY-restoring limit: $\delta^{(1)}m_h^2 \xrightarrow{m_{\text{SUSY}} \to 0} 0$

• but we need $\delta m_h^2 \approx \mathcal{O}(20 - 40 \, {
m GeV}) \, !
ightarrow$ higher-orders required

 \rightarrow SUSY connects scalar- with gauge- and Yukawa-sector!

 $(m_h^{\text{tree}})^2 \approx m_Z^2 \cos^2 2\beta + \lambda v^2 \sin^2 2\beta$

• MSSM:
$$m_h^{ ext{tree}} \leq m_Z < ext{125}\, ext{GeV}$$
 \oint

NMSSM: $\lambda < 0.7$ (assuming perturbative unitarity below m_{GUT})

 \rightarrow In either case: Higher-order corrections must shift m_h to the measured Higgs mass. At one-loop, the leading contributions to $\delta^{(1)}m_h^2$ from the top/stop sector are:

• $M_{\tilde{t}} = m_t + m_{\text{SUSY}} \Rightarrow$ in the SUSY-restoring limit: $\delta^{(1)}m_h^2 \xrightarrow{m_{\text{SUSY}} \to 0} 0$

• but we need $\delta m_h^2 \approx \mathcal{O}(20 - 40 \,\text{GeV}) ! \rightarrow$ higher-orders required

 $(m_h^{\text{tree}})^2 \approx \underbrace{m_Z^2 \cos^2 2\beta}_{\text{MSSM}} + \underbrace{\lambda \nu^2 \sin^2 2\beta}_{\text{NMSSM}}$ \rightarrow SUSY connects scalar- with gauge- and Yukawa-sector!

• MSSM:
$$m_h^{ ext{tree}} \leq m_Z < ext{125}\, ext{GeV}$$
 \oint

NMSSM: $\lambda < 0.7$ (assuming perturbative unitarity below m_{GUT})

 \rightarrow In either case: Higher-order corrections must shift m_h to the measured Higgs mass. At one-loop, the leading contributions to $\delta^{(1)}m_h^2$ from the top/stop sector are:

• $M_{\tilde{t}} = m_t + m_{\text{SUSY}} \Rightarrow$ in the SUSY-restoring limit: $\delta^{(1)}m_h^2 \xrightarrow{m_{\text{SUSY}} \to 0} 0$

• but we need $\delta m_h^2 \approx \mathcal{O}(20 - 40 \,\text{GeV}) ! \rightarrow \text{higher-orders required}$

Example of Higher-Order Corrections: One-Loop

One-Loop corrections:

- all one-loop contributions are well-known
- how to estimate the uncertainty without calculating higher-orders? → using different renormalization conditions [cf. talk by Gudrun Heinrich]
- DR or OS renormalization of top & stop sector [Graf et al. 12]
 - \rightarrow estimate uncertainty due to missing higher-orders

SUSY and the (SM-like) Higgs Boson Mass One- and Two-Loop Corrections: Uncertainty Estimate Two-Loop: Issue of Infra-Red (IR) Divergen

Nhung Dao, Martin Gabelmann, Margarete Mühlleitner, and Heidi Rzehak - Overview

Example of Higher-Order Corrections: One-Loop

One-Loop corrections:

- all one-loop contributions are well-known
- how to estimate the uncertainty without calculating higher-orders? → using different renormalization conditions [cf. talk by Gudrun Heinrich]
- DR or OS renormalization of top & stop sector [Graf et al. 12]
 - ightarrow estimate uncertainty due to missing higher-orders

SUSY and the (SM-like) Higgs Boson Mass One- and Two-Loop Corrections: Uncertainty Estimate Two-Loop: Issue of Infra-Red (IR) Divergencoo Nunca Dao, Martin Gabelmann, Margarete Mühlleitner, and Heidi Rzehak – Overview September 29th 2021 7/13

Example of Higher-Order Corrections: Two-Loop

- gaugeless limit $g_1, g_2 \rightarrow 0$
- vanishing external momentum: $p^2 \approx m_h^2 \approx v^2 g_{1,2}^2 \rightarrow 0$
- leading QCD $\mathcal{O}(\alpha_s \alpha_t)$ mixed OS/DR [Dao et al. 14']
- $\mathcal{O}((\alpha_t + \alpha_{\lambda} + \alpha_{\kappa})^2)$ can be large [Goodsell et al. '16] \rightarrow uncertainty reduced?
- this work: mixed OS/DR renormalization [Dao et al. '21] → investigate theory uncertainty

Nhung Dao, Martin Gabelmann, Margarete Mühlleitner, and Heidi Rzehak - Overview

Example of Higher-Order Corrections: Two-Loop

- gaugeless limit $g_1, g_2 \rightarrow 0$
- vanishing external momentum: $p^2 \approx m_h^2 \approx v^2 g_{1,2}^2 \rightarrow 0$
- leading QCD $\mathcal{O}(\alpha_s \alpha_t)$ mixed OS/DR [Dao et al. 14']
- $\begin{array}{l} \mathcal{O}(\alpha_t^2) \text{ very sensitive to top mass} \\ \rightarrow \text{ intruduces larger theoretical uncertainty [Dao et al. '19']} \end{array}$
- $\mathcal{O}((\alpha_t + \alpha_{\lambda} + \alpha_{\kappa})^2)$ can be large [Goodsell et al. '16] \rightarrow uncertainty reduced?
- this work: mixed OS/DR renormalization [Dao et al. '21] → investigate theory uncertainty

Nhung Dao, Martin Gabelmann, Margarete Mühlleitner, and Heidi Rzehak - Overview

Example of Higher-Order Corrections: Two-Loop $\alpha_s \alpha_t \propto \frac{g_s^2 y_t^2}{16\pi^2}$

- gaugeless limit $g_1, g_2 \rightarrow 0$
- vanishing external momentum: $p^2 \approx m_h^2 \approx v^2 g_{1,2}^2 \rightarrow 0$
- leading QCD $\mathcal{O}(\alpha_s \alpha_t)$ mixed OS/ $\overline{\text{DR}}$ [Dao et al. 14']
- $\mathcal{O}((\alpha_t + \alpha_{\lambda} + \alpha_{\kappa})^2)$ can be large [Goodsell et al. '16] \rightarrow uncertainty reduced?
- this work: mixed OS/DR renormalization [Dao et al. '21] → investigate theory uncertainty

Nhung Dao, Martin Gabelmann, Margarete Mühlleitner, and Heidi Rzehak - Overview

Example of Higher-Order Corrections: Two-Loop $\alpha_t^2 \propto \frac{y_t^4}{16\pi^2}$

- gaugeless limit $g_1, g_2 \rightarrow 0$
- vanishing external momentum: $p^2 \approx m_h^2 \approx v^2 g_{1,2}^2 \rightarrow 0$
- leading QCD $\mathcal{O}(\alpha_s \alpha_t)$ mixed OS/ $\overline{\text{DR}}$ [Dao et al. 14']
- $\mathcal{O}(\alpha_t^2)$ very sensitive to top mass \rightarrow intruduces larger theoretical uncertainty [Dao et al. '19]
- $\mathcal{O}((\alpha_t + \alpha_{\lambda} + \alpha_{\kappa})^2)$ can be large [Goodsell et al. '16] \rightarrow uncertainty reduced?
- this work: mixed OS/DR renormalization [Dao et al. '21] → investigate theory uncertainty

Nhung Dao, Martin Gabelmann, Margarete Mühlleitner, and Heidi Rzehak - Overview

Example of Higher-Order Corrections: Two-Loop $\alpha_t \alpha_\lambda \propto \frac{y_t^2 \lambda^2}{16\pi^2}$

- gaugeless limit $g_1, g_2 \rightarrow 0$
- vanishing external momentum: $p^2 \approx m_h^2 \approx v^2 g_{1,2}^2 \rightarrow 0$
- leading QCD $\mathcal{O}(\alpha_s \alpha_t)$ mixed OS/ $\overline{\text{DR}}$ [Dao et al. 14']
- $\mathcal{O}(\alpha_t^2)$ very sensitive to top mass \rightarrow intruduces larger theoretical uncertainty [Dao et al. '19]
- $\mathcal{O}((\alpha_t + \alpha_\lambda + \alpha_\kappa)^2)$ can be large [Goodsell et al. '16] \rightarrow uncertainty reduced?
- this work: mixed OS/DR renormalization [Dao et al. '21] → investigate theory uncertainty

Nhung Dao, Martin Gabelmann, Margarete Mühlleitner, and Heidi Rzehak - Overview

Example of Higher-Order Corrections: Two-Loop $\alpha_t \alpha_\lambda \propto \frac{y_t^2 \lambda^2}{16\pi^2}$

- gaugeless limit $g_1, g_2 \rightarrow 0$
- vanishing external momentum: $p^2 \approx m_h^2 \approx v^2 g_{1,2}^2 \rightarrow 0$
- leading QCD $\mathcal{O}(\alpha_s \alpha_t)$ mixed OS/ $\overline{\text{DR}}$ [Dao et al. 14']
- $\mathcal{O}(\alpha_l^2)$ very sensitive to top mass \rightarrow intruduces larger theoretical uncertainty [Dao et al. '19]
- $\mathcal{O}((\alpha_t + \alpha_\lambda + \alpha_\kappa)^2)$ can be large [Goodsell et al. '16] \rightarrow uncertainty reduced?
- this work: mixed OS/DR renormalization [Dao et al. '21] → investigate theory uncertainty

Nhung Dao, Martin Gabelmann, Margarete Mühlleitner, and Heidi Rzehak - Overview

Example of Higher-Order Corrections: Two-Loop $\alpha_t \alpha_\lambda \propto \frac{y_t^2 \lambda^2}{16\pi^2}$

- gaugeless limit $g_1, g_2 \rightarrow 0$
- vanishing external momentum: $p^2 \approx m_h^2 \approx v^2 g_{1,2}^2 \rightarrow 0$
- leading QCD $\mathcal{O}(\alpha_s \alpha_t)$ mixed OS/ $\overline{\text{DR}}$ [Dao et al. 14']
- $\mathcal{O}(\alpha_t^2)$ very sensitive to top mass \rightarrow intruduces larger theoretical uncertainty [Dao et al. '19]
- $\mathcal{O}((\alpha_t + \alpha_\lambda + \alpha_\kappa)^2)$ can be large [Goodsell et al. '16] \rightarrow uncertainty reduced?
- this work: mixed OS/DR renormalization [Dao et al. '21] → investigate theory uncertainty

Global parameter scan:

Reduction of the dependence of m_h on the renormalization scheme of the top/stop sector of 0-2% compared to $\mathcal{O}(\alpha_t^2)$ for $\sqrt{\lambda^2 + \kappa^2} = 0.0.7$.

SUSY and the (SM-like) Higgs Boson Mass One- and Two-Loop Corrections: Uncertainty Estimate Two-Loop: Issue of Infra-Red (IR) Divergen

Nhung Dao, Martin Gabelmann, Margarete Mühlleitner, and Heidi Rzehak - Overview

Comparison with MSSM/previous Results

In the MSSM, Higgs-self couplings are given by gauge couplings:

$$V_{\text{MSSM}}^{\text{quartic}} \propto g_1^2 (|H_u|^2 - |H_d|^2)^2 + g_2^2 (H_u \sigma_a H_u + H_d \sigma_a H_d)^2 \xrightarrow{g_1, g_2 \to 0} 0$$

In the NMSSM, there are additional non-zero self-couplings:

$$V_{\text{NMSSM}}^{\text{quartic}} \propto V_{\text{MSSM}}^{\text{quartic}} + |\boldsymbol{\lambda}H_uH_d + \kappa S^2|^2 \xrightarrow{\boldsymbol{g_1,g_2} \to 0} \neq 0$$

 \rightarrow Many new **two-loop diagrams with Higgs-self-couplings**. Massless Goldstones \rightarrow appearance of IR divergences.

SUSY and the (SM-like) Higgs Boson Mass One- and Two-Loop Corrections: Uncertainty Estimate OO

Nhung Dao, Martin Gabelmann, Margarete Mühlleitner, and Heidi Rzehak - Overview

Comparison with MSSM/previous Results

In the MSSM, Higgs-self couplings are given by gauge couplings:

$$V_{ ext{MSSM}}^{ ext{quartic}} \propto {g_1}^2 (|H_u|^2 - |H_d|^2)^2 + {g_2}^2 (H_u \sigma_a H_u + H_d \sigma_a H_d)^2 \xrightarrow{g_1, g_2 o 0} 0$$

In the NMSSM, there are additional non-zero self-couplings:

$$V_{\text{NMSSM}}^{\text{quartic}} \propto V_{\text{MSSM}}^{\text{quartic}} + |\lambda H_u H_d + \kappa S^2|^2 \xrightarrow{g_1, g_2 \to 0} \neq 0$$

\rightarrow Many new two-loop diagrams with Higgs-self-couplings. Massless Goldstones \rightarrow appearance of IB divergences.

Nhung Dao, Martin Gabelmann, Margarete Mühlleitner, and Heidi Rzehak - Overview

Comparison with MSSM/previous Results

In the MSSM, Higgs-self couplings are given by gauge couplings:

 $V_{\text{MSSM}}^{\text{quartic}} \propto g_1^2 (|H_u|^2 - |H_d|^2)^2 + g_2^2 (H_u \sigma_a H_u + H_d \sigma_a H_d)^2 \xrightarrow{g_1, g_2 \to 0} 0$

In the NMSSM, there are additional non-zero self-couplings:

 $V_{\text{NMSSM}}^{\text{quartic}} \propto V_{\text{MSSM}}^{\text{quartic}} + |\lambda H_u H_d + \kappa S^2|^2 \xrightarrow{g_1, g_2 \to 0} \neq 0$

 \rightarrow Many new two-loop diagrams with Higgs-self-couplings. Massless Goldstones \rightarrow appearance of IR divergences.

SUSY and the (SM-like) Higgs Boson Mass One- and Two-Loop Corrections: Uncertainty Estimate OO

Nhung Dao, Martin Gabelmann, Margarete Mühlleitner, and Heidi Rzehak - Overview

IR-Divergent Two-Loop Selfenergies

- - assume $p^2 \neq 0 \rightarrow$ multi-scale problem (numerical integration required)
 - use $M_{\text{Goldstone}} = 0 \rightarrow M_{\text{Regulator}}$; test if $\partial m_h / \partial M_{\text{Regulator}}^2$ is small
 - assume partial $p^2 \neq 0$; only in IR-divergent diagrams (Braathen, Goodsell, '16)

SUSY and the (SM-like) Higgs Boson Mass One- and Two-Loop Corrections: Uncertainty Estimate Two-Loop: Issue of Infra-Red (IR) Divergen 000

Nhung Dao, Martin Gabelmann, Margarete Mühlleitner, and Heidi Rzehak - Overview

IR-Divergent Two-Loop Selfenergies

- \rightarrow inclusion of finite external momentum required!
- - assume $p^2 \neq 0 \rightarrow$ multi-scale problem (numerical integration required)
 - use $M_{\text{Goldstone}} = 0 \rightarrow M_{\text{Regulator}}$; test if $\partial m_h / \partial M_{\text{Regulator}}^2$ is small
 - assume partial $p^2 \neq 0$; only in IR-divergent diagrams (Braathen, Goodsell, '16)

SUSY and the (SM-like) Higgs Boson Mass One- and Two-Loop Corrections: Uncertainty Estimate Two-Loop: Issue of Infra-Red (IR) Divergen 000 September 29th 2021 10/13

IR-Divergent Two-Loop Selfenergies

• \rightarrow inclusion of finite external momentum required!

Solutions:

- assume $p^2 \neq 0 \rightarrow$ multi-scale problem (numerical integration required)
- use $M_{
 m Goldstone} = 0
 ightarrow M_{
 m Regulator}$; test if $\partial m_h / \partial M_{
 m Regulator}^2$ is small
- assume partial $p^2 \neq 0$; only in IR-divergent diagrams [Braathen, Goodsell, '16]
 - \rightarrow avoids numerical integration methods.

SUSY and the (SM-like) Higgs Boson Mass One- and Two-Loop Corrections: Uncertainty Estimate Oo Oo Soo Oo Setember 29th 2021 10/13

Example: momentum dependence

Compare **full-momentum** result with **partial-momentum** (solid) and **mass-regulator** (dashed, $M_{\text{Regulator}}^2 = R \mu_{\text{Ren.}}^2$):

SUSY and the (SM-like) Higgs Boson Mass One- and Two-Loop Corrections: Uncertainty Estimate Two-Loop: Issue of Infra-Red (IR) Divergen

Nhung Dao, Martin Gabelmann, Margarete Mühlleitner, and Heidi Rzehak - Overview

Short Outlook

Higgs mass predictions being pushed by a very active community

- full p²- and gauge-contributions [Goodsell, Passehr, '19]
- combine with 3-loop MSSM results [Kant, Harlander, Mihaila, Steinhauser, '10] → reduce uncertainty further (?)
- better treatment of m_t
- need to resum large logs if $m_{SUSY} > 1 2 \,\mathrm{TeV}$

SUSY and the (SM-like) Higgs Boson Mass One- and Two-Loop Corrections: Uncertainty Estimate Two-Loop: Issue of Infra-Red (IR) Divergen

Summary

Solved the issue of IR-divergent self-energies and implemented them in the code $\ensuremath{\texttt{NMSSMCALC}}$:

- three different solutions to IR divergences
- impact much smaller than renormalization-scheme uncertainty and the overall two-loop corrections

Allows for precise Higgs mass predictions:

- mixed DR-OS calculation on its way to full two-loop precision
- further accuracy requires momentum/gauge dependence and more loops

SUSY and the (SM-like) Higgs Boson Mass One- and Two-Loop Corrections: Uncertainty Estimate Two-Loop: Issue of Infra-Red (IR) Divergen

Influence of Higgs Mass Prediction onto Collider Phenomenology

- transparent: either Higgs signal rates or Higgs boson mass not reproduced
- bold: all theoretical and experimental constraints fulfilled

Backup

000000

Results: Global Scan

Backup

0000000

Results: CPV Phases

000000

IR-Finite Two-Loop Selfenergies

Example of an IR-finite subset with intermediate IR-divergences:

Careful isolation of divergences using mass regulator or dimensional regularisation shows:

- IR-divergence of first diagram cancels against the other three
- cancellation happens only if $M_{
 m Goldstone}^{
 m 1-loop}\equiv 0$
- $\blacksquare \to$ working at the *tree-level* minimum is sufficient [this work] or alternatively using an OS-condition for the Goldstone mass [Braathen, Goodsell, '16]

IR-Finite Two-Loop Selfenergies

Example of an IR-finite subset with intermediate IR-divergences:

Careful isolation of divergences using mass regulator or dimensional regularisation shows:

- IR-divergence of first diagram cancels against the other three
- cancellation happens only if $M_{\text{Goldstone}}^{1-\text{loop}} \equiv 0$
- \rightarrow working at the *tree-level* minimum is sufficient [this work] or alternatively using an OS-condition for the Goldstone mass [Braathen, Goodsell, '16]

Two-Loop Diagrammatic *n*-Point Functions ($n \le 2$)

Idea: calculate "generic" diagrams Assume most general Lorentz-invariant couplings and arbitrary masses. Calculate to "robust form" and perform specific field-insertions later-on.

Strategy:

- FeynArts: generate generic diagrams ("InsertionLevel→{Generic}") [Hahn, '01]
- FeynCalc: basic simplifications, Dirac traces [Shtabovenko, '16]
- TARCER: reduction to scalar master integrals [Tarasov, '97] [Mertig, Scharf, '98]
- handle special cases such as vanishing Gram determinants etc.

Then:

- NMSSM FeynArts model file with SARAH [Staub, '08]: calculates LO-vertices and NLO-CT-vertices
- generate arbitrary set of diagrams with FeynArts ("InsertionLevel→{Classes or Particles}")
- iterate over generic amplitudes while applying insertion rules
- evaluate numerics

Two-Loop
$$\mathcal{O}\left(\left(\alpha_{\lambda}+\alpha_{\kappa}+\alpha_{t}\right)^{2}\right)$$
 Corrections

Ingredients:

numerically solve:

$$det\left[p^{2}\mathbb{1}_{5x5}-m_{h}^{2}+\ \hat{\Sigma}_{h}^{(1)}(p^{2})+\ \hat{\Sigma}_{h}^{(2)}(0)|_{g_{1,2}=0}\right]=0$$

renormalized self-energy:

$$\hat{\Sigma}_{h}^{(2)}(p^{2}) = \Sigma_{h}^{(2)}(0) - \delta^{(2)}m_{h}^{2}$$

two-loop mass matrix counter-term:

$$\begin{split} \delta^{(2)} m_h^2 &= \mathcal{O}\left(\left(\delta^{(1)} Z_h \right)^2 + \delta^{(1)} m_h \delta^{(1)} Z_h \right) + \left(\delta^{(2)} Z_h^{\dagger} m_h^{(0)} + m_h^{(0)} \delta^{(2)} Z_h \right) \\ &+ m_h^{(0)} (\alpha \to \alpha + \delta^{(1)} \alpha + \delta^{(2)} \alpha) |_{\alpha = 0}, \ \alpha = \{\lambda, \kappa, \nu, \nu_S, t_i, \ldots\} \end{split}$$

- pure $\overline{\text{DR}}$: $\delta \alpha$ are purely divergent, canceled by wave-function ren. (SUSY-non ren.)
- OS quantities (e.g. $\delta v \leftrightarrow \delta m_{W,Z}$, or δt_i) : can yield extra finite contributions to $\delta^{(2)} m_h^2$

Most manpower required for (decreasing complexity):

- two-loop wave-function ren. constants $\delta^{(2)}Z_h = \frac{\partial \Sigma_h(\rho^2)}{\partial \rho^2}\Big|_{\rho^2=0}$
- two-loop vector self-energy diagrams $\delta^{(2)} \Sigma_V(0)$ (required for $\delta^{(2)} v$)
- two-loop scalar self-energy diagrams δ⁽²⁾Σ_h(0)
- two-loop tadpole diagrams $\delta^{(2)}t_i$

The same discussion applies for the charged Higgs bosons, $h
ightarrow H^{\pm}$.

Backup

Status in the MSSM (fixed-order)

Most precise results are based on 3-loop self-energies&tadpoles: [Kant, Harlander, Mihaila, Steinhauser, '10]

- gaugeless limit g₁, g₂ → 0 (no graphs involving EW vector bosons)
- vanishing external momenta: $p^2 \approx m_h^2 \approx v^2 g_{1,2}^2 \rightarrow 0$
- consider strong sector only, t, t, g, g (up to m⁴_t-terms)
- assume hierarchies, e.g. (1) m_g >> m_l, (2) m_g >> m_l, etc.
- DR and MDR
- new 3-loop results (semi-numerical) for general mass hierarchies [Reyes, Fazio, '19]

Two-loop self-energies (diagrammatic or effective potential): [Slavich, '01], [Martin, '01], [Degrassi, Di Vita, Slavich, '14], [Borowka, Hahn, Heinemeyer, Heinrich, Hollik, '14], [...]

- $g_1, g_2, p^2 \rightarrow 0$
- $p^2 \neq 0$: $m_h^{p^2=0} m_h^{p^2\neq 0} \approx 100 500 \,\mathrm{MeV}$
- full mass hierarchies
- with CPV and RPV
- $\overline{\text{DR}}$ and OS conditions for $m_{\tilde{t}}$, m_t and $m_{H^{\pm}}$

Backup