NLO MATCHING CONDITIONS IN EXTENDED HIGGS SECTORS

M. Gabelmann, M. Mühlleitner, F. Staub

Institute of Theoretical Physics (ITP) Karlsruhe Institute of Technology

DPG-Frühjahrstagung 21.03.2018

OUTLINE

- Motivation of Effective Field Theories (EFTs) in Context of Higgs Mass Calculations
- 2. Implementation in SARAH
- 3. Introduction to Matching Conditions
- 4. Application: High Scale NMSSM
- 5. Conclusions & Outlook

BSM HIGGS MASS PREDICTIONS

Experimental data pushes new physics scale M_{BSM} towards the multi-TeV scale.

- Relaxing the requirement of naturalness
- BSM models still contrained to correctly predict the measured Higgs mass value
- Problem: large mass gaps spoil fixed order calculations through large logarithms
- Solution: resummation with effective field theory (EFT) techniques

MSSM: EFT VS. FIXED ORDER

[Draper, Wagner, Lee]

MSSM: EFT VS. FIXED ORDER

[Draper, Wagner, Lee]

IMPLEMENTATION IN SARAH

STATE OF THE ART I

Fixed order calculation

- one loop self energies for all particles
- two loop self energies for scalars

STATE OF THE ART II

EFT Higgs mass calculation

• only if one light scalar is present

STATE OF THE ART II

EFT Higgs mass calculation

• only if one light scalar is present

NEW IMPLEMENTATION

MATCHING CONDITIONS

EFT IN A NUTSHELL

- **Top-Down:** integrating out heavy degrees of freedom
- Feynman diagrammatic approach
- Expand amplitudes in $\frac{p^2}{M_{BSM}^2}$

TREE-LEVEL MATCHING

ONE-LOOP MATCHING

APPLICATIONS

PREVIOUS WORKS

Many studies already exist in literature

Ref	Date	High Scale	Low Scale
[Wells]	2003	MSSM	SM(+EWinos)
[Giudice et al.]	2004	MSSM	SM(+EWinos)
[Haber et al.]	2009	MSSM	2HDM
[Giudice et al.]	2011	MSSM	SM(+EWinos)
[Bagnaschi et al.]	2014	MSSM	SM(+EWinos)
[Lee et al.]	2015	MSSM	2HDM(+EWinos)
[Bagnaschi et al.]	2017	MSSM	SM
[Zarate]	2017	NMSSM	SM

CODES

Also a long list of computer codes exist:

ΤοοΙ	High Scale	Low Scale (Higgs Sector)
SusyHD [Vega, Villadoro]	MSSM	SM
FeynHiggs [Heinemeyer et al.]	(N)MSSM	2HDM
FlexibleSUSY [Athron et al.]	generic	2HDM
SARAH/SPheno [Staub, Porod]	generic	SM (+ X)

They all have either SM or 2HDM Higgs sectors in the low energy theory

APPLICATION: NMSSM

 $W_{NMSSM} \propto \lambda_s SH_u H_d \xrightarrow{SSB} v_s \lambda_s H_u H_d$

- Tree-Level matching already in literature [Zarate]
- First cross-check: decouple the singlet
- heavy singlet mass
- heavy singlet VEV $v_s \propto rac{M_{SUSY}}{\lambda_s}$
- $\lambda_s
 ightarrow 0$ while keeping $v_s \lambda_s$ constant

 \rightarrow Should recover the MSSM!

NMSSM(a) tan $\beta = 4$

CONCLUSIONS & OUTLOOK

- Precise Higgs mass predictions for large mass gaps:
 - running and matching of multiple quartics
 - able to study extended Higgs sectors
- Take advantage of the new implementation:
 - MSSM \rightarrow 2HDM
 - already in literature [Wagner et. al],[Nierste et. al]
 - $\circ~$ reproduced within minutes of runtime
 - NMSSM \rightarrow SSM
 - NMSSM \rightarrow N2HDM

THANK YOU FOR YOUR ATTENTION

BACKUP

MIXED LOOPS

- Mixed loop = contains heavy and light fields
- Non local -possibly divergent- loop contributions may enter the matching condition
- IR divergences caused by light fields must cancel in the matching condition

POLE MASS MATCHING

- match pole masses of SM an BSM theories $m_{H}^{BSM^2}(M_{BSM}) = m_{H}^{SM^2}(M_{BSM})$
- use relation for the SM pole mass $m_{H}^{SM\,^2}(M_{BSM}) = v^2(M_{BSM})\lambda_{SM}(M_{BSM})$
 - extract effective quartic coupling at the matching scale $\lambda_{SM}=rac{1}{v^2}(m_H^{BSM\,2}-\Pi_{SM})$

POLE MASS MATCHING

In case of more then one light Higgs (e.g. effective 2HDM):

- non-trivial releations between multiple quartics, VEVs and mass parameters
- system often overconstrained (more quartics than mass parameters)

MSSM HIGGS MASS PREDICTIONS

[Porod, Staub, '17]

LOOPS OR OPERATORS?

Depending on the nature of the UV completion we have important

- contributions from "NLO" higher dimensional operators in the power counting
- NLO corrections to effective operators
- new effective couplings appearing at higher orders

Which contributions are of leading order?

LOOPS OR OPERATORS?

Answer in the: matching condition

$$\lambda_{SM}(\Lambda)\equiv\lambda_{BSM}(\Lambda)$$

Assume that both, the SM(+EFT) and the UV completion give the same prediction for an given process at the matching scale.

$$rac{c_6}{\Lambda^2} \Phi^6_{SM} \stackrel{SSB}{\longrightarrow} rac{c' v^2}{\Lambda^2} h^4_{SM} \stackrel{v < \Lambda}{\longleftarrow} \Delta \lambda_{ extbf{BSM}}$$

LOOPS OR OPERATORS?

Decoupling

- For $v << \Lambda$ dimension six operators become less important.
- no sizeable mixing through SM VEV $\propto O\left(rac{v^2}{\Lambda^2}
 ight)$

$$\lambda_{ extbf{BSM,NLO}} \propto rac{1}{16\pi^2} extbf{log}(rac{\Lambda}{Q})$$

 \rightarrow Loop contributions to dimension 4 operators are of leading order