Karlsruhe School of Elementary Particle and Astroparticle Physics: Science and Technology (KSETA)

Max Aker

Information

Institute: IKP
Room: 411
Phone: +49 721 60828434
Email: Max.Aker#kit.edu

PhD Thesis

Tritium sources for neutrino experiments: Stability and interactions of tritium with key surfaces

Supervisor: Prof. Dr. G. Drexlin (ETP, KIT)
Second Supervisor: JProf. Dr. L. Gastaldo (KIP, Heidelberg University)

Publications

publications-reviewed
[1] Max Aker, Michael Sturm, Florian Priester, Simon Tirolf, Dominic Batzler, Robin Größle, Alexander Marsteller, Marco Röllig, and Magnus Schlösser. In situ tritium decontamination of the katrin rear wall using an ultraviolet/ozone treatment. Fusion Science and Technology, pages 1--8, 2023. [ bib ]
[2] M. Aker et al. Search for Lorentz-invariance violation with the first KATRIN data. Phys. Rev. D, 107(8):082005, 2023. [ bib | DOI | arXiv ]
[3] M. Aker et al. Search for keV-scale sterile neutrinos with the first KATRIN data. Eur. Phys. J. C, 83(8):763, 2023. [ bib | DOI | arXiv ]
[4] M. Aker et al. KATRIN: status and prospects for the neutrino mass and beyond. J. Phys. G, 49(10):100501, 2022. [ bib | DOI | arXiv ]
[5] M. Aker et al. New Constraint on the Local Relic Neutrino Background Overdensity with the First KATRIN Data Runs. Phys. Rev. Lett., 129(1):011806, 2022. [ bib | DOI | arXiv ]
[6] M. Aker et al. Improved eV-scale sterile-neutrino constraints from the second KATRIN measurement campaign. Phys. Rev. D, 105(7):072004, 2022. [ bib | DOI | arXiv ]
[7] M. Aker et al. Direct neutrino-mass measurement with sub-electronvolt sensitivity. Nature Phys., 18(2):160--166, 2022. [ bib | DOI | arXiv ]
[8] M. Aker et al. Precision measurement of the electron energy-loss function in tritium and deuterium gas for the KATRIN experiment. Eur. Phys. J. C, 81(7):579, 2021. [ bib | DOI | arXiv ]
[9] M. Aker et al. The design, construction, and commissioning of the KATRIN experiment. JINST, 16(08):T08015, 2021. [ bib | DOI | arXiv ]
[10] M. Aker et al. Analysis methods for the first KATRIN neutrino-mass measurement. Phys. Rev. D, 104(1):012005, 2021. [ bib | DOI | arXiv ]
[11] M. Aker et al. Bound on 3+1 Active-Sterile Neutrino Mixing from the First Four-Week Science Run of KATRIN. Phys. Rev. Lett., 126(9):091803, 2021. [ bib | DOI | arXiv ]
[12] M. Aker et al. Suppression of Penning discharges between the KATRIN spectrometers. Eur. Phys. J. C, 80(9):821, 2020. [ bib | DOI | arXiv ]
[13] M. Aker and M. Röllig. Material studies to reduce the tritium memory effect in bixs analytic systems. Fusion Science and Technology, 76(3):373--378, 2020. [ bib | DOI ]
[14] M. Aker et al. First operation of the KATRIN experiment with tritium. Eur. Phys. J. C, 80(3):264, 2020. [ bib | DOI | arXiv ]
[15] M. Aker et al. Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN. Phys. Rev. Lett., 123(22):221802, 2019. [ bib | DOI | arXiv ]
[16] M. Aker et al. Quantitative long-term monitoring of the circulating gases in the katrin experiment using raman spectroscopy. Sensors, 20(17):4827, 2020. [ bib ]

This file was generated by bibtex2html 1.98.

publications-UNreviewed