[1] M. Aker et al. First constraints on general neutrino interactions based on KATRIN data. 10 2024. [ bib | arXiv ]
[2] M. Aker et al. Measurement of the electric potential and the magnetic field in the shifted analysing plane of the KATRIN experiment. 8 2024. [ bib | arXiv ]
[3] Max Aker, Michael Sturm, Florian Priester, Simon Tirolf, Dominic Batzler, Robin Größle, Alexander Marsteller, Marco Röllig, and Magnus Schlösser. In situ tritium decontamination of the katrin rear wall using an ultraviolet/ozone treatment. Fusion Science and Technology, 80(3-4):303--310, 2024. [ bib ]
[4] M. Aker et al. Direct neutrino-mass measurement based on 259 days of KATRIN data. 6 2024. [ bib | arXiv ]
[5] Dominic Batzler, Max Aker, Robin Größle, Daniel Kurz, Alexander Marsteller, Florian Priester, Michael Sturm, and Peter Winney. Monitoring of ozone production and depletion rates in a tritium-compatible system. Fusion Engineering and Design, 203:114425, 2024. [ bib ]
[6] Genrich Zeller et al. Demonstration of tritium adsorption on graphene. 10 2023. [ bib | DOI | arXiv ]
[7] M. Aker et al. Search for Lorentz-invariance violation with the first KATRIN data. Phys. Rev. D, 107(8):082005, 2023. [ bib | DOI | arXiv ]
[8] M. Aker et al. Search for keV-scale sterile neutrinos with the first KATRIN data. Eur. Phys. J. C, 83(8):763, 2023. [ bib | DOI | arXiv ]
[9] M. Aker et al. KATRIN: status and prospects for the neutrino mass and beyond. J. Phys. G, 49(10):100501, 2022. [ bib | DOI | arXiv ]
[10] M. Aker et al. New Constraint on the Local Relic Neutrino Background Overdensity with the First KATRIN Data Runs. Phys. Rev. Lett., 129(1):011806, 2022. [ bib | DOI | arXiv ]
[11] M. Aker et al. Improved eV-scale sterile-neutrino constraints from the second KATRIN measurement campaign. Phys. Rev. D, 105(7):072004, 2022. [ bib | DOI | arXiv ]
[12] M. Aker et al. Direct neutrino-mass measurement with sub-electronvolt sensitivity. Nature Phys., 18(2):160--166, 2022. [ bib | DOI | arXiv ]
[13] M. Aker et al. Precision measurement of the electron energy-loss function in tritium and deuterium gas for the KATRIN experiment. Eur. Phys. J. C, 81(7):579, 2021. [ bib | DOI | arXiv ]
[14] M. Aker et al. The design, construction, and commissioning of the KATRIN experiment. JINST, 16(08):T08015, 2021. [ bib | DOI | arXiv ]
[15] M. Aker et al. Analysis methods for the first KATRIN neutrino-mass measurement. Phys. Rev. D, 104(1):012005, 2021. [ bib | DOI | arXiv ]
[16] M. Aker et al. Bound on 3+1 Active-Sterile Neutrino Mixing from the First Four-Week Science Run of KATRIN. Phys. Rev. Lett., 126(9):091803, 2021. [ bib | DOI | arXiv ]
[17] M. Aker et al. Suppression of Penning discharges between the KATRIN spectrometers. Eur. Phys. J. C, 80(9):821, 2020. [ bib | DOI | arXiv ]
[18] Max Aker et al. First operation of the KATRIN experiment with tritium. Eur. Phys. J. C, 80(3):264, 2020. [ bib | DOI | arXiv ]
[19] M. Aker and M. Röllig. Material studies to reduce the tritium memory effect in bixs analytic systems. Fusion Science and Technology, 76(3):373--378, 2020. [ bib | DOI ]
[20] M. Aker et al. Quantitative long-term monitoring of the circulating gases in the katrin experiment using raman spectroscopy. Sensors, 20(17):4827, 2020. [ bib ]
[21] M. Aker et al. Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN. Phys. Rev. Lett., 123(22):221802, 2019. [ bib | DOI | arXiv ]

This file was generated by bibtex2html 1.98.