

Qualification of a Temperature Stabilized Test Station for Silicon Sensor Modules for the CMS Experiment

T 68.9

Tobias Barvich, Felix Bögelspacher, Alexander Dierlamm, Ulrich Husemann, **Roland Koppenhöfer**, Stefan Maier, Thomas Müller | March 27, 2019

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS

Phase-2 Upgrade of the CMS Outer Tracker

- New silicon tracker for the CMS experiment at the HL-LHC by 2026
- Requirements for the Outer Tracker upgrade:
 - Improved radiation tolerance up to $10^{15} \, {\rm n_{eq} cm^{-2}}$
 - Increased granularity
 - Improved two-track separation
 - Reduced material in tracking volume
 - Contribution to L1 trigger

2S modules and PS modules in the Phase-2 Outer Tracker

Silicon sensors in tracker modules will be operated at about -20 °C

Phase-2 Upgrade of the CMS Outer Tracker • 0 March 27, 2019 Temperature Stabilized Functional Test Station for 2S Modules 2S-Module Functional Test Station

2S Module for the CMS Outer Tracker

¹Aluminum / carbon fiber composite

Phase-2 Upgrade of the CMS Outer Tracker

00

2S-Module Functional Test Station

Design Requirements for a 2S Module Test Station

- Test modules during prototyping and production (electrical calibration, charge deposition, thermal cycles)
- Readout station appropriate for module production
 - Quick and safe mounting and removal of modules (no screws)
 - Automate processes as far as possible
 - Reach $T_{\rm Set}$ quickly
- $T_{\rm Set} \leq -33 \,^{\circ}{
 m C}$ (cooling temperature in CMS)
- Thermal runaway simulation performed with heat load of approx. 6 W

Phase-2 Upgrade of the CMS Outer Tracker oo March 27, 2019 Temperature Stabilized Functions

19 Temperature Stabilized Functional Test Station for 2S Modules

Design Requirements for a 2S Module Test Station

- After assembly procedure: module mounted on aluminum carrier
- 5 cooling points per module

- Place module carrier on two copper jigs
- Jigs cooled with two-stage cooling system:
 Four Peltier elements and precooling at -10 °C

[Koppenhöfer18]: Master Thesis, ETP-KA/2018-17

Phase-2 Upgrade of the CMS Outer Tracker

2S-Module Functional Test Station

March 27, 2019 Temperature Stabilized Functional Test Station for 2S Modules

roland.koppenhoefer@kit.edu 6/15

- Setup placed in aluminum box:
 - Thermal insulation
 - Faraday cage
 - Shielding against light and radiation exposure
 - Stabilization of humidity level
- Bypass for cooling liquid outside box
 allows warming up of precooling
 blocks to open box quicker (dew point)

Phase-2 Upgrade of the CMS Outer Tracker

March 27, 2019 Temperature Stabilized Functional Test Station for 2S Modules

2S-Module Functional Test Station

Phase-2 Upgrade of the CMS Outer Tracker

March 27, 2019

Temperature Stabilized Functional Test Station for 2S Modules

2S-Module Functional Test Station

roland.koppenhoefer@kit.edu 8/15

Thermal Performance

- Minimal temperature to reach: $-45 \,^{\circ}$ C on cooling jigs $\Leftrightarrow \approx -34 \,^{\circ}\text{C}$ on sensors for switched-off 2S module
- Thermal cycles between 20 °C and -35 °C: 100 cycles in 24 hours possible
- Thermal heat load up to 7 W induced to module carrier on cooling jigs: no thermal runaway of temperatures in station

Phase-2 Upgrade of the CMS Outer Tracker

March 27, 2019 Temperature Stabilized Functional Test Station for 2S Modules 2S-Module Functional Test Station ____**_**___

roland.koppenhoefer@kit.edu 9/15

Functional Tests

Functional tests performed with 2S module prototype built at KIT

Phase-2 Upgrade of the CMS Outer Tracker 00

2S-Module Functional Test Station

March 27, 2019 Temperature Stabilized Functional Test Station for 2S Modules

roland.koppenhoefer@kit.edu 10/15

Functional Tests – Results

IV-curves at several stable temperatures on the cooling jigs

Phase-2 Upgrade of the CMS Outer Tracker

2S-Module Functional Test Station

March 27, 2019 Temperature Stabilized Functional Test Station for 2S Modules

roland.koppenhoefer@kit.edu 11/15

Functional Tests - Results

Noise measurement at room temperature (cooling deactivated)

Phase-2 Upgrade of the CMS Outer Tracker

March 27, 2019

Temperature Stabilized Functional Test Station for 2S Modules

2S-Module Functional Test Station

Functional Tests – Results

- Noise slightly increases if Peltier cooling is turned on
- No large temperature dependence of noise level observed

Error bars indicate standard deviation, temperatures measured on cooling jigs

Strip Readout with ⁹⁰Sr Source

- Crosscheck of functional test results with radioactive source possible
- Random trigger, $T = 20 \,^{\circ}$ C, $V_{\text{bias}} = 300 \,\text{V}$

Phase-2 Upgrade of the CMS Outer Tracker

March 27, 2019 Temperature Stabilized Functional Test Station for 2S Modules

2S-Module Functional Test Station

roland.koppenhoefer@kit.edu 14/15

Conclusions

- New CMS Outer Tracker will be made of PS and 2S modules after Phase-2 upgrade
- Developed 2S module test station for module testing during prototyping and production
- Thermal power of cooling system validated → Testing of 2S modules under expected thermal conditions in the upgraded CMS experiment possible
- Functional tests with 2S module prototype successfully performed
- Outlook: Further functional and thermal tests with upcoming module prototypes this year

Phase-2 Upgrade of the CMS Outer Tracker

2S-Module Functional Test Station

March 27, 2019 Temperature Stabilized Functional Test Station for 2S Modules

Backup

March 27, 2019 Temperature Stabilized Functional Test Station for 2S Modules

2S Module Production at ETP

Thermal Performance of 2S Modules

Component	Power Consumption (mW)
$2 \times CBCs$	2188
2 CICs	625
LpGBT	500
VTRx+	306
DC-DC converters	1770
Total	5389

[CERN-LHCC-2017-009]

Thermal runaway $T_{
m TR}(3000\,{
m fb}^{-1})=-21.6\,{}^\circ{
m C}$

•
$$T_{
m CO2} \leq -33\,^{\circ}
m C$$

Cooling Power of Peltier element *TEC1-12705*

 $\bullet \ {\it P}_{\rm therm}^{\rm max}(\Delta {\it T}=25\,{}^{\circ}{\rm C})\approx 13\,{\rm W} \ \Rightarrow {\it T}_{\rm Preecooling}=-10\,{}^{\circ}{\rm C}$

March 27, 2019 Temperature Stabilized Functional Test Station for 2S Modules

Fryka ULK 2002 Datasheet

			Characteristics.	modern generation of circulating coole		
odel	ULK 1002	ULK 2002	onaracteristics.	for professional applicatio		
[emperature range [min/max]	-10°C/+40°C	-10°C/+40°C	energy-efficient: fan with EC technology tow noise level: particularly quiet components fan adjust its speed to the required value user-friendly: integrated funnel self-sealing hose connector with quick coupling drain constants			
Control accuracy	+/- 0,5 K	+/- 0,5 K				
Cooling capacity [at +20°C]	1200 W	2300 W				
[at +10°C]	850 W	1600 W				
[at -10°C]	400 W	750 W				
Pump capacity flow rate	12 l/min	12 l/min				
Pump capacity flow pressure	2,9 bar	2,9 bar				
External dimensions WxDxH	35x44,5x66cm	35x44,5x94cm	high-quality components: touchscreen controller with high-grade glass screen and integrated flow and digital fill level indicators components from renowned manufacturers refrigeration unit: fully hermetically sealed, air-cooled, low maintenance high operational reliability:			
Weight	41 kg	65 kg				
Ambient temperature [min/max]	+12°C/+30°C	+12°C / +30°C				
Electrical connection	230V / 50 Hz	230V / 50Hz				
Current [max.]	3,5 A	8.0 A				
Coolant tank	2.0 to 9.51	2.0 to 9.5 l	treeze-up and thermal overload protection flow control with dov rupping protection			
			 optical and acoustical 	alarm		
			· error messages are d	isplayed in plain text		
			 proven standard: 			
options:			 MUD bus interface 			
Operation with natural cools	ants					
Heating for extended tempe	rature range					
Portable version						
Potential-free alarm contac	t with connection	n to an external a	larm system			
Voltage input for externally	setting the set p	oint	·			
Voltage output for reading th	ne actual value					
Interface converter/gateway	from RS485 to U	USB or Ethernet				
Optional direct measurement	nt of the applicat	ion's temperatur	e with an external gauge:			
by subsequently setting the	set point, greate	er temperature sl	ability can be achieved than	with a standard system		

March 27, 2019 Temperature Stabilized Functional Test Station for 2S Modules

- 8CBC2 module readout via transition board possible at one hybrid side (turnable)
- Same procedure planned for 8CBC3 module with universal interface board

Thermal Performance

- Thermal study of cooling power using heating resistors $P_{\rm therm} \leq 5 imes 1.4 \, {\rm W}$

$P_{ m therm}$	T_{PID}	$T_{\rm S1}$	T_{S2}	ΔT
0 W 7 W	-35 -35	-34.3 -33.3	-33.6 -33.5	0.7 -0.2
				\checkmark

all temperatures in $^\circ\mathrm{C}$

Module Readout and Temperature Control Software

- 2S module readout using software developed by CMS community
- Combine module readout and temperature control with Graphical User Interface to simplify test procedure
 - GUI written in Qt 5.6.3
 - Temperature readout via PT-sensors
 - PID algorithm used for control of power of Peltier elements
 - Monitoring of power supplies (low and high voltage)
 - Monitoring of dew point (1-wire sensor)

