

Neutrino Mixing from SUSY breaking

in collaboration with Ulrich Nierste

Wolfgang Gregor Hollik | March 5, 2013

INSTITUT FÜR THEORETISCHE TEILCHENPHYSIK KIT

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

www.kit.edu

CKM vs. PMNS matrix

CKM matrix close to unity

$$V_{\mathsf{CKM}} = \begin{pmatrix} \bullet & \cdot & \cdot \\ \cdot & \bullet & \cdot \\ \cdot & \cdot & \bullet \end{pmatrix}$$

small off-diagonal: generate mixings radiatively ?

different pattern for the leptonic mixing matrix:

$$U_{\mathsf{PMNS}} = \begin{pmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{pmatrix}$$

- large mixings
- non-vanishing θ_{13} : possible CP violation in ν oscillations

[T2K, DoubleChooz, Reno, DayaBay]

try to model quark and lepton mixing using the same mechanism?

[Weinberg 1972]

Radiative Flavour Violation in the MSSM

Theories with Additional Sources of Flavour Violation

- non-minimal flavour violating MSSM
- arbitrary flavour structure in the soft breaking terms?

$$\mathcal{M}^2_{\tilde{\mathcal{Q}}}, \mathcal{M}^2_{\tilde{u}}, \mathcal{M}^2_{\tilde{d}}, \mathcal{M}^2_{\tilde{\ell}}, \mathcal{M}^2_{\tilde{e}}, \qquad A^u, A^d, A^e$$

 additional flavour mixing in fermion–sfermion–gaugino interaction
 especially non-CKM-like: e.g. quark–squark–gluino and lepton–slepton–neutralino

[Crivellin, Nierste 2009]

PMNS matrix renormalization

$$i\frac{g}{\sqrt{2}}\gamma^{\mu}P_{L}U_{\rm PMNS}^{\dagger} \rightarrow i\frac{g}{\sqrt{2}}\gamma^{\mu}P_{L}\left(U^{(0)\dagger} + \Delta U^{e}U^{(0\dagger)\dagger} + \Delta U^{\nu}U^{(0\dagger)\dagger}\right),$$

flavour changing self energies and sensitivity to neutrino mass

$$\Delta U_{fi}^
u \sim rac{m_{
u_f} \Sigma_{fi}}{\Delta m_
u^2}$$

Neutrino masses and seesaw

Standard Model + righthanded Neutrinos = Seesaw Type I

$$-\mathcal{L}_{\nu,\text{mass}} = \underbrace{\overline{\nu}_L m_D \nu_R}_{\text{Dirac mass}} + \frac{1}{2} \underbrace{\overline{\nu}_L^c m_R \nu_R}_{\text{Majorana mass}} + \text{h. c}$$

Neutrino masses and seesaw

Standard Model + righthanded Neutrinos = Seesaw Type I

$$-\mathcal{L}_{\nu,\text{mass}} = \underbrace{\overline{\nu}_L m_D \nu_R}_{\text{Dirac mass}} + \frac{1}{2} \underbrace{\overline{\nu}_L^c m_R \nu_R}_{\text{Majorana mass}} + \text{h. c.}$$

Neutrino mass matrix:

$$\mathcal{M}_{\nu} = \left(\begin{array}{cc} 0 & m_D \\ m_D^T & m_R \end{array}\right).$$

What about m_R ?

righthanded neutrinos are SM singlets → no constraint for mass
seesaw : m_{\nu} = -m_{\nu}m_{\nu}⁻¹m_{\nu} ≈ O(0.1 eV)
assumption: Dirac mass of order EW scale (O(10...100 GeV)): m_{\nu} ~ O(10^{13...14} GeV)

The MSSM with righthanded neutrinos

Superpotential of the $\nu {\rm MSSM}$

$$\mathcal{W}^{\ell} = \mu H_d \cdot H_u - Y_{\ell}^{IJ} H_d \cdot L_L^I E_R^J + Y_{\nu}^{IJ} H_u \cdot L_L^I N_R^J + \frac{1}{2} m_R^{IJ} N_R^I N_R^J,$$

with
$$L_L = (\ell_L, \tilde{\ell}_L) \in SU(2)_L$$
 and $E_R = (e_L^c, \tilde{e}_R^*)$, $N_R = (\nu_L^c, \tilde{\nu}_R^*)$.

Soft-breaking terms

$$\begin{aligned} \mathcal{V}_{\text{soft}} = & \left(\mathcal{M}_{\tilde{\ell}}^{2}\right)^{IJ} \tilde{L}_{L}^{I*} \tilde{L}_{L}^{J} + \left(\mathcal{M}_{\tilde{e}}^{2}\right)^{IJ} \tilde{e}_{R}^{I} \tilde{e}_{R}^{J*} + \left(\mathcal{M}_{\tilde{\nu}}^{2}\right)^{IJ} \tilde{\nu}_{R}^{I} \tilde{\nu}_{R}^{J*} \\ & - \left[\left(B_{\nu}\right)^{IJ} \tilde{\nu}_{R}^{I*} \tilde{\nu}_{R}^{J*} + A_{e}^{IJ} H_{1} \cdot \tilde{L}_{L}^{I} \tilde{e}_{R}^{J*} - A_{\nu}^{IJ} H_{2} \cdot \tilde{L}_{L}^{I} \tilde{\nu}_{R}^{J*} + \text{h.c.} \right], \end{aligned}$$

- try to generate PMNS mixing completely radiatively
- " ν MSSM": Y^{ν} in general arbitrary (for simplicity taken diagonal)
- all soft breaking masses assumed flavour blind
- only source of flavour mixing: soft trilinear couplings
- large off-diagonal values of A^e ruled out by $\ell_j \rightarrow \ell_i \gamma$
- toy numbers for m_0 , M_1 , M_2 , μ , tan β , ...

Some remarks...

- corrections to U_{ii}^{PMNS} more or less linear in A_{ii}^{ν} (for $i \neq j$)
- no decoupling, if all SUSY parameters shifted uniformly
- size of corrections correlated to Δm_{ii}^2 and, of course, U_{ii}^{phys}

- scan over uniform soft mass (assuming $\mathcal{M}^2_{\tilde{Q}}, \mathcal{M}^2_{\tilde{u}}, \mathcal{M}^2_{\tilde{d}}, \mathcal{M}^2_{\tilde{\ell}}, \mathcal{M}^2_{\tilde{e}} = m^2_{\text{soft}}\mathbb{1}$)
- display values of off-diagonal A parameters needed to generate corresponding mixing matrix element fully radiatively
- since corrections are linear in A, those grow linearly with $m_{\rm soft}$

Wolfgang Gregor Hollik - Neutrino Mixing from SUSY breaking

March 5, 2013 7/8

• dividing by *m*_{soft}...

$$c_{ij} = rac{A^{
u}_{ij}(m_{
m soft})}{m_{
m soft}}$$

corrections crucially depend on the neutrino mass spectrum:

$$\Delta U_{fi}^
u \sim rac{m_{
u_f} \Sigma_{fi}}{\Delta m_
u^2}$$

- rough estimate: self energy $\Sigma_{\it fi} \sim m_{
 u_{i,f}}$
- devide by that:

$$f_{ij} = \frac{m_{\nu_f} m_{\nu_i}}{\Delta m_{fi}^2}$$

$$c_{ij} = rac{A_{ij}(M_{
m soft})}{m_{
m soft}} \qquad \hookrightarrow \qquad rac{C_{ij}}{f_{ij}}$$

generate large PMNS elements

- size of correction larger for large U_{ij}
- correct for that

$$ilde{c}_{ij} = \left. rac{c_{ij}}{f_{ij}}
ight/ U^{\mathsf{phys}}_{ij}$$

For completeness: numerical input values used for those plots

•
$$M_R = 10^{12} \text{ GeV}$$

• SUSY scale: 2 TeV, $m_{soft} = 200, \ldots, 4000$ GeV

•
$$\tan \beta = 10$$
, $\mu = -3600~{
m GeV}$

- $m_{\nu}^{(0)} = 0.35$ eV (potential KATRIN discovery)
- $\Delta m^2_{12} = 7.54 imes 10^{-23} \text{ GeV}^2$, $\left| \Delta m^2_{13} \right| = 2.47 imes 10^{-21} \text{ GeV}^2$

•
$$|U_{12}| = 0.53$$
, $|U_{13}| = 0.15$, $|U_{23}| = 0.58$

$$\bullet M_1 = M_2 = m_{\rm soft}$$

- all other A values set to zero
- neutrino B term set to zero

Conclusion

- described corrections very general to theories with new flavour structures
- can completely spoil tree-level mixing patterns
- simple extension of MSSM to incorporate ν masses can lead to lepton mixing from SUSY breaking in *sneutrino* sector
- numer(olog)ical example: at least for quasi-degenerate neutrino masses potential size of corrections for (1, 3) and (2, 3) mixing rather the same

Backup

Slides

Splitting of the neutrino mass spectrum degeneracy of neutrino mass spectrum 10 m₁ m m_3 neutrino mass [eV] 0.1 0.01 0.1 0.01 neutrino mass scale m₀ [eV]

enhanced corrections to PMNS mixing

flavour changing self energies and sensitivity to neutrino mass

see-saw extended MSSM

Superpotential of the $\nu {\rm MSSM}$

$$\mathcal{W}^{\ell} = \mu H_d \cdot H_u - Y^{IJ}_{\ell} H_d \cdot L^I_L E^J_R + Y^{IJ}_{\nu} H_u \cdot L^I_L N^J_R + \frac{1}{2} m^{IJ}_R N^I_R N^J_R,$$

where the chiral superfields are $L_L = (\ell_L, \tilde{\ell}_L) \in SU(2)_L$ and $E_R = (e_R^c \equiv (e_R)^c, \tilde{e}_R^*)$, $N_R = (\nu_L^c, \tilde{\nu}_R^*) \in SU(2)_R$, but leftchiral.

Soft-breaking terms

$$\begin{aligned} \mathcal{V}_{\text{soft}} = & \left(\mathcal{M}_{\tilde{\ell}}^{2}\right)^{IJ} \tilde{L}_{L}^{I*} \tilde{L}_{L}^{J} + \left(\mathcal{M}_{\tilde{e}}^{2}\right)^{IJ} \tilde{e}_{R}^{I} \tilde{e}_{R}^{J*} + \left(\mathcal{M}_{\tilde{\nu}}^{2}\right)^{IJ} \tilde{\nu}_{R}^{I} \tilde{\nu}_{R}^{J*} \\ & - \left[\left(B_{\nu}\right)^{IJ} \tilde{\nu}_{R}^{I*} \tilde{\nu}_{R}^{J*} + A_{e}^{IJ} H_{1} \cdot \tilde{L}_{L}^{I} \tilde{e}_{R}^{J*} - A_{\nu}^{IJ} H_{2} \cdot \tilde{L}_{L}^{I} \tilde{\nu}_{R}^{J*} + \text{h.c.} \right], \end{aligned}$$

effects on sneutrino mass matrix

- charged slepton mass matrix as in the MSSM
- sneutrino mass matrix in the MSSM: simple

$$\mathcal{M}_{\tilde{\nu}}^{2} = \left(\begin{array}{cc} \mathcal{M}_{\tilde{\ell}}^{2} + \mathcal{M}_{Z}^{2} \mathcal{T}_{3L}^{\tilde{\nu}} \cos 2\beta \mathbb{1} & \mathbb{1} \\ \mathbb{1} & \mathbb{0} \end{array}\right)$$

• Majorana mass term $\nu_R^T m_R \nu_R$ inflates sneutrino mass matrix: additional terms $\sim \tilde{\nu}_R \tilde{\nu}_R, \tilde{\nu}_R^* \tilde{\nu}_R^*$

$$\mathcal{M}_{\tilde{\nu}}^{2} = \begin{pmatrix} \mathcal{M}_{L^{*}L}^{2} & \mathcal{M}_{L^{*}L^{*}}^{2} & \mathcal{M}_{L^{*}R^{*}}^{2} & \mathcal{M}_{L^{*}R}^{2} \\ \mathcal{M}_{LL}^{2} & \mathcal{M}_{LL^{*}}^{2} & \mathcal{M}_{LR^{*}}^{2} & \mathcal{M}_{LR}^{2} \\ \mathcal{M}_{RL}^{2} & \mathcal{M}_{RL^{*}}^{2} & \mathcal{M}_{RR^{*}}^{2} & \mathcal{M}_{RR}^{2} \\ \mathcal{M}_{R^{*}L}^{2} & \mathcal{M}_{R^{*}L^{*}}^{2} & \mathcal{M}_{R^{*}R^{*}}^{2} & \mathcal{M}_{R^{*}R}^{2} \end{pmatrix}$$

$12\times12\text{-Matrix}$

effects on sneutrino mass matrix

- charged slepton mass matrix as in the MSSM
- sneutrino mass matrix in the MSSM: simple

$$\mathcal{M}_{\tilde{\nu}}^{2} = \left(\begin{array}{cc} \mathcal{M}_{\tilde{\ell}}^{2} + \mathcal{M}_{Z}^{2} \mathcal{T}_{3L}^{\tilde{\nu}} \cos 2\beta \mathbb{1} & \mathbb{1} \\ \mathbb{1} & \mathbb{0} \end{array}\right)$$

• Majorana mass term $\nu_R^T m_R \nu_R$ inflates sneutrino mass matrix: additional terms $\sim \tilde{\nu}_R \tilde{\nu}_R, \tilde{\nu}_R^* \tilde{\nu}_R^*$

$$\mathcal{M}_{ ilde{
u}}^2 = \left(egin{array}{cc} \mathcal{M}_{LL}^2 & \mathcal{M}_{LR}^2 \ \left(\mathcal{M}_{LR}^2
ight)^\dagger & \mathcal{M}_{RR}^2 \end{array}
ight)$$

 $12\times12\text{-Matrix}$

full sneutrino squared mass matrix in the νMSSM

$$\mathcal{M}^2_{ec{
u}} = rac{1}{2} \left(egin{array}{cc} \mathcal{M}^2_{LL} & \mathcal{M}^2_{LR} \ (\mathcal{M}^2_{LR})^\dagger & \mathcal{M}^2_{RR} \end{array}
ight)$$

$$\mathcal{M}_{LL}^{2} = \begin{pmatrix} \mathcal{M}_{\tilde{\ell}}^{2} + \frac{1}{2} \mathcal{M}_{Z}^{2} \cos 2\beta \mathbf{1} + \mathbf{m}_{\nu} \mathbf{m}_{\nu}^{\dagger} & \mathbf{0} \\ \mathbf{0} & (\searrow)^{*} \end{pmatrix},$$

$$\mathcal{M}_{RL}^{2} = \begin{pmatrix} \frac{1}{2} \mathbf{m}_{\nu} \mathbf{m}_{R} & -\mu \cot \beta \mathbf{m}_{\nu} - v_{2} \mathbf{A}_{\nu} \\ -\mu^{*} \cot \beta \mathbf{m}_{\nu}^{*} - v_{2} \mathbf{A}_{\nu} & \frac{1}{2} \mathbf{m}_{\nu}^{*} \mathbf{m}_{R}^{*} \end{pmatrix},$$

$$\mathcal{M}_{RR}^{2} = \begin{pmatrix} (\mathcal{M}_{\tilde{\nu}}^{2})^{T} + \mathbf{m}_{\nu}^{T} \mathbf{m}_{\nu}^{*} + \frac{1}{2} \mathbf{m}_{R}^{*} \mathbf{m}_{R} & -2\mathbf{B}^{*} \\ -2\mathbf{B} & \mathcal{M}_{\tilde{\nu}}^{2} + \mathbf{m}_{\nu}^{\dagger} \mathbf{m}_{\nu} + \frac{1}{2} \mathbf{m}_{R} \mathbf{m}_{R}^{*} \end{pmatrix}.$$

Wolfgang Gregor Hollik - Neutrino Mixing from SUSY breaking

March 5, 2013 14/8

effective sneutrino mass matrix

$$\mathcal{M}_{\tilde{\nu}\ell}^{2} = \begin{pmatrix} \mathbf{m}_{\Delta L=0}^{2} & (\mathbf{m}_{\Delta L=2}^{2})^{*} \\ \mathbf{m}_{\Delta L=2}^{2} & (\mathbf{m}_{\Delta L=0}^{2})^{*} \end{pmatrix} + \mathcal{O}\left(\mathcal{M}_{\mathsf{SUSY}}^{2} \mathbf{m}_{R}^{-2}\right),$$

$$\mathbf{m}_{\Delta L=0}^{2} = \mathsf{MSSM} + \mathbf{m}_{\nu}^{D} \mathbf{m}_{\nu}^{D^{\dagger}} - \mathbf{m}_{\nu}^{D} \mathbf{m}_{R} \left(\mathbf{m}_{R}^{2} + \mathcal{M}_{\tilde{\nu}}^{2}\right)^{-1} \mathbf{m}_{R} \mathbf{m}_{\nu}^{D},$$

$$\mathbf{m}_{\Delta L=2}^{2} = \mathbf{X}_{\nu} \mathbf{m}_{\nu}^{D} \left(\mathbf{m}_{R}^{2} + \mathcal{M}_{\tilde{\nu}}^{2}\right)^{-1} \mathbf{m}_{R} \mathbf{m}_{\nu}^{DT} + (\rightarrowtail)^{T} - 2\mathbf{m}_{\nu}^{D*} \mathbf{m}_{R} \left[\mathbf{m}_{R}^{2} + (\mathcal{M}_{\tilde{\nu}}^{2})^{T}\right]^{-1} \mathbf{B} \left(\mathbf{m}_{R}^{2} + \mathcal{M}_{\tilde{\nu}}^{2}\right)^{-1} \mathbf{m}_{R} \mathbf{m}_{\nu}^{D^{\dagger}}.$$

$$X_{\nu}\mathbf{m}_{\nu}^{D} = -\mu^{*}\cot\beta\mathbf{m}_{\nu}^{D*} - v_{2}\mathbf{A}_{\nu}$$

radiative flavour violation in the lepton

sector

radiative flavour violation in the lepton

sector

flavour changing self energies

$$\Sigma_{fi}^{\ell}(p) = \Sigma_{fi}^{\ell RL}(p^2) P_L + \Sigma_{fi}^{\ell LR}(p^2) P_R + \not p \left[\Sigma_{fi}^{\ell LL}(p^2) P_L + \Sigma_{fi}^{\ell RR}(p^2) P_R \right]$$

PMNS matrix renormalization

$$i \frac{g}{\sqrt{2}} \gamma^{\mu} P_L U^{\dagger} \rightarrow i \frac{g}{\sqrt{2}} \gamma^{\mu} P_L \left(\mathbb{1} + D_{L,fi} + D_{R,fi} \right),$$

radiative flavour violation in the lepton

sector

PMNS matrix renormalization

$$\begin{split} D_{L,fi} &= \sum_{j \neq f} \frac{m_{\nu_f} \left(\Sigma_{fj}^{(\nu)LR} + m_{\nu_f} \Sigma_{fj}^{(\nu)RR} \right) + m_{\nu_j} \left(\Sigma_{fj}^{(\nu)RL} + m_{\nu_f} \Sigma_{fi}^{(\nu)LL} \right)}{m_{\nu_j}^2 - m_{\nu_f}^2} U_{ji}^{(0)\dagger} \\ &\equiv \sum_{j=1}^3 \left[\Delta U_L^{\nu} \right]_{fj} U_{ji}^{(0)\dagger} \end{split}$$

Majorana mass renormalization

effects of righthanded Neutrinos

- trilinear couplings A_{ν}
- see-saw-like terms in sneutrino mass matrix

$$\delta_{LL^*}^{\tilde{\nu}_{\ell}} \sim X_{\nu} \mathbf{m}_{\nu}^{D} \left(\mathbf{m}_{R}^{2} + \mathcal{M}_{\tilde{\nu}}^{2}\right)^{-1} \mathbf{m}_{R} \mathbf{m}_{\nu}^{DT}$$

$$\sim \frac{v_{u}A_{\nu}}{v_{R}^{2}} \quad \text{with} \quad \mathbf{m}_{R} = v_{R} \mathbf{h}_{R}$$