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Nambu (relativistic models, scalar condensate breaks
symmetry to generate masses for fermions)
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Heisenberg (Ferromagnetism, nearest-neighbour interaction)
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repulsive two-body interaction)
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Bardeen, Cooper and Schrieffer identified the Bosons of
Ginzburg-Landau (effective theory)

Nambu (relativistic models, scalar condensate breaks
symmetry to generate masses for fermions)

Goldstone (spinless zero-mass excitations)
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[P. Higgs: C. R. Physique 8 (2007) 970]
Heisenberg (Ferromagnetism, nearest-neighbour interaction)

Bogoliubov (Superfluidity, Bose condensation with short-range
repulsive two-body interaction)

Ginzburg and Landau (Superconductivity, Bose condensation
of charged quasi-particles)

Bardeen, Cooper and Schrieffer identified the Bosons of
Ginzburg-Landau (effective theory)

Nambu (relativistic models, scalar condensate breaks
symmetry to generate masses for fermions)

Goldstone (spinless zero-mass excitations)
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[P. Higgs: C. R. Physique 8 (2007) 970]
Heisenberg (Ferromagnetism, nearest-neighbour interaction)

Bogoliubov (Superfluidity, Bose condensation with short-range
repulsive two-body interaction)

Ginzburg and Landau (Superconductivity, Bose condensation
of charged quasi-particles)

Bardeen, Cooper and Schrieffer identified the Bosons of
Ginzburg-Landau (effective theory)

Nambu (relativistic models, scalar condensate breaks
symmetry to generate masses for fermions)
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[P. Higgs: C. R. Physique 8 (2007) 970]
Heisenberg (Ferromagnetism, nearest-neighbour interaction)

Bogoliubov (Superfluidity, Bose condensation with short-range
repulsive two-body interaction)

Ginzburg and Landau (Superconductivity, Bose condensation
of charged quasi-particles)

Bardeen, Cooper and Schrieffer identified the Bosons of
Ginzburg-Landau (effective theory)

Nambu (relativistic models, scalar condensate breaks
symmetry to generate masses for fermions)

Goldstone (spinless zero-mass excitations)
Goldstone, Salam and Weinberg (proved Goldstone’s theorem)
Anderson (“Higgs mechanism” in superconductors)

Higgs (local gauge invariance fails axioms of Goldstone: evade
Goldstone's theorem in gauge theories)
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1964: Higgs (simples field-theoretic model (“Higgs model"),
relativistic version of Ginzburg—Landau) (rejected by PL!)

1964: Higgs 2nd version (+ general features of ssb gauge theories,
massive scalar excitations remaining: Higgs bosons) [1]

1964: Englert and Brout (QFT instead of classical FT by Higgs) [2]
1967: Weinberg (SSB of Glashow's SU(2) x U(1))

1968: Salam (?) [in: Proceedings of the Eighth Nobel Symposium, p. 367]
1971: t'Hooft (completed Veltman's renormalization programme)
1972: HEP Conference @ Fermilab (outbreak of theoretical activity)
1973: discovery of weak neutral currents

Anecdote besides: When Higgs met Nambu twenty years later, he
revealed that he had been the referee of [1] and [2].
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@ a parameter assumes a critical value
@ the symmetric configuration gets unstable

@ the ground state ist degenerate
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o Ground state rotationally invariant: M = (S;) = 0.
@ Below critical temperature: non-zero magnetization M #£0.

@ New vacuum has SO(2) instead of SO(3) rotational symmetry.



Ferromagnet: rotational symmetric Hamiltonian

H=-J) S-S

Z'7j

o Ground state rotationally invariant: M = (S;) = 0.
@ Below critical temperature: non-zero magnetization M #£0.

@ New vacuum has SO(2) instead of SO(3) rotational symmetry.

Degenerate vacua

@ Instead of a single vacuum state, now: family of vacua related
via rotations.

@ System chooses the particular vacuum itself: symmetry is
spontaneously broken by the choice of a vacuum.




Global symmetry

L=0,0"0"¢—V(,¢7)
impose global phase transformation: ¢ — ¢ (U(1) symmetry)

V(g, ") = V(|¢]) = m?6¢" + A (¢")°
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impose global phase transformation: ¢ — ¢ (U(1) symmetry)
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Ground state: Minimizing the potentiall

DV _ g+ 22" (66) £ 0




Symmetri

Global symmetry
L=0,0"0"¢—V(,¢7)

impose global phase transformation: ¢ — ¢ (U(1) symmetry)

V(g 8%) = V(Ig]) = m*¢¢™ + X (¢9*)”

Ground state: Minimizing the potentiall

O _ 24" + 220" (66%) £ 0

om?2>0:¢0*=0=2¢

e m? < 0: local max ¢ = 0, minima:

2 m? 2 0lbl0N2 = o2
9|° = oy =V ® [(0[#]0)|” = v




Mexic

decomposing: ¢ = ¢ + i¢o

Minima of V along circle |¢| = v. If system chooses particular
direction, e.g. ¢1 = v (meaning ¢2 = 0), symmetry is
spontaneously broken.



Mexica

decomposing: ¢ = ¢ + i¢o

Minima of V along circle |¢| = v. If system chooses particular
direction, e.g. ¢1 = v (meaning ¢2 = 0), symmetry is
spontaneously broken.

Polar coordinates vs. real and imaginary parts
¢(z) = p(2)e™®) = ¢1(2) + iga(x),
expanding around the vacuum: ¢(z) = v + % (h(z) + ig(z))




Plug the expansion ¢(z) = v + % (h(x) +ig(z)) into the

potential V (|¢]) = m2pd* + X\ (p¢*)*:

1 1 1
L = const. + -0,hd"h + -0,90"g — - (—2m2) h? + WW.
2 2 2 2

Mh

o h(z), g(x) real scalar fields
@ starting with one complex scalar ¢(z) having mass m
em?<0 < mi>0:h acquires mass my = v/ —2m?

@ g is massless — Goldstone boson




Plug the expansion ¢(z) = v + % (h(x) +ig(z)) into the

potential V (|¢]) = m2pd* + X\ (p¢*)*:

L = const. + %Oﬂhﬁ”h + %@g@“g — % (—2m2) h? + WW.
—
m2
o h(z), g(x) real scalar fields
@ starting with one complex scalar ¢(z) having mass m
om?<0 < m?>0:hacquires mass my = v —2m?2
@ g is massless < Goldstone boson?

?Goldstone particles may be fermions as well: e.g. Goldstinos of SUSY
breaking theories
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The Gold
Goldstone's theorem

Spontaneous breaking of a (continuous) symmetry
< massless particle: (Nambu-)Goldstone particle
Manifold of vacua

@ U(1) example: 1D vacuum

@ dimensionality of vacua-manifold:
# of generators that break the symmetry

@ zero vacuum energy: H|0) =0




The Gold

Goldstone's theorem

Spontaneous breaking of a (continuous) symmetry
< massless particle: (Nambu-)Goldstone particle

| A

Manifold of vacua
@ U(1) example: 1D vacuum

@ dimensionality of vacua-manifold:
# of generators that break the symmetry

@ zero vacuum energy: H|0) =0

@ generator of symmetry trafo 7% [T* H| =0

H (T°|0)) = T*H|0) = 0




The Gold

Goldstone's theorem

Spontaneous breaking of a (continuous) symmetry
< massless particle: (Nambu-)Goldstone particle

| A

Manifold of vacua
@ U(1) example: 1D vacuum

@ dimensionality of vacua-manifold:
# of generators that break the symmetry

@ zero vacuum energy: H|0) =0

@ generator of symmetry trafo 7% [T* H| =0
H (T°|0)) = T*H|0) = 0

e if vacuum is not invariant under symmetry: 7|0) # 0,
we have a new state with minimum energy, a new vacuum!

<




A non-

Goldstone's theorem:

@ one Goldstone particle for each generator which breaks the
symmetry

@ quantum numbers of those Goldstones are the same as the
corresponding generators




A non-

Goldstone's theorem:

@ one Goldstone particle for each generator which breaks the
symmetry

@ quantum numbers of those Goldstones are the same as the
corresponding generators

Abelian example:

U(1) symmetry: ¢ in 2-dimensional representation




A non-A

Group of spatial rotations: SO(3)
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A non-A

Group of spatial rotations: SO(3)

@ ¢; in fundamental (isovector) representation: i = 1,2,3
1 m m2 2
L= 5 i OF s — 7@%‘@ — A(iti)”,

G:gi— (e‘ia’““’(k)>ij o5 = Uijp;.




A non-Ab

Group of spatial rotations: SO(3)

@ ¢; in fundamental (isovector) representation: i = 1,2,3
1 - m? 2
L= 5 ,9i0 by — 7@@ — X (ii)”,
G0 () gy U,
Qi i 7o ijPj-

@ Minimum of the potential with m? < 0:

o2\ 1/2
ool =R+ B+ 3= () =

o freedom to choose “physical’ vacuum: ¢g = vés




Choosing vacuum as ¢y = vés: not invariant under full group G,
but subgroup H € G (rotations around 3-axis)

e

H: = exp™ ¢y = o,



Choosing vacuum as ¢y = vés: not invariant under full group G,
but subgroup H € G (rotations around 3-axis)

-, . (3) - —
H: ¢y = exp'™ g = oo,
but nevertheless: potential V(¢) is invariant under G:

V(') =V(¢)



Broken

Choosing vacuum as ¢y = vés: not invariant under full group G,
but subgroup H € G (rotations around 3-axis)

—

Mo G = exp s Gy = &,
but nevertheless: potential V(¢) is invariant under G:
V(¢') =V(¢)

How many Goldstone bosons?

¢3 acquires vev: ¢3 = X + v, (p1) =0, (¢2) =0, (x) =0.
2

@ quadratic term in the potential: only ~

mi = 8v?), Mg, = Mg, = 0.

@ one generator (w®) left: # = SO(2) = U(1)
— one massive field




Broken

Choosing vacuum as ¢y = vés: not invariant under full group G,
but subgroup H € G (rotations around 3-axis)

—

Mo G = exp s Gy = &,
but nevertheless: potential V(¢) is invariant under G:
V(¢') =V(¢)

How many Goldstone bosons?

¢3 acquires vev: ¢3 = X + v, (p1) =0, (¢2) =0, (x) =0.
2

@ quadratic term in the potential: only ~

mi = 8v?), Mg, = Mg, = 0.

@ one generator (w®) left: # = SO(2) = U(1)
— one massive field

# of Goldstone particles: ng = dim(G/H) = dim G — dim H.



Abelian g

@ up to now: global symmetries: ¢ — €4
@ now: local (= gauge) symmetry: ¢ — i19(%) ¢

U(1) gauge invariant Lagrangian:
* 1 v
£ = (Dud)* D6 = V(lgl) - {Fu ™,

gauge-covariant derivative: D¢ = (0, +iqA,) ¢,
field strength tensor: F),, = 0, A, — 0, A,,

V(1¢]) = m*¢* b+ A (¢ 9)°,

minimum: v = _2—73\‘2 —  ¢x) = (1} + %h(m)) eia(@)

SSB & Higgs



Abelian g

@ up to now: global symmetries: ¢ — €4
@ now: local (= gauge) symmetry: ¢ — i19(%) ¢

U(1) gauge invariant Lagrangian:
* 1 v
£ = (Dud)* D6 = V(lgl) - {Fu ™,

gauge-covariant derivative: D¢ = (0, +iqA,) ¢,
field strength tensor: F),, = 0, A, — 0, A,,

V(1¢]) = m*¢* b+ A (¢ 9)°,

minimum: v = _2—73\‘2 —  ¢x) = (1} + %h(aj)) eia(z)a

SSB & Higgs



Abelian g

@ up to now: global symmetries: ¢ — €4
@ now: local (= gauge) symmetry: ¢ — i19(%) ¢

U(1) gauge invariant Lagrangian:

L=

(Dub)” D6 = V(16) = gFu F,

gauge-covariant derivative: D, ¢ =

field strength tensor: F},,

V(|el)

. R
minimum: v = N

Mb\[

= 0,4,

= m%¢* o + A (¢9)*,

(au + iun) o,

— 0y A,

—  ¢x) = (v + %h(w)) gl

h(z) + iq(v + \}ih@))Au-

“phase a(x) can be removed by gauge transformation

SSB & Higgs




Rewriting the Lagrangian:

1 v

L= %8“%1(:6)8“}1(55) - 5&\?}1(1’)2 = A (\@h(m)g + Eléh(x)4>

2
1
+q¢° <v + h(:@) Ay Al — S F P

Sl

o term ~ A, A*: mass m124 = 2¢%*v?

2 2
2,2 2 q
i A AR + 75 vh(z) A, A" + Eh(x)QA#A“



Rewriting the Lagrangian:

1 v

L= %8“%1(:6)8“}1(55) - 5&\%{3}1(1’)2 = A (\/ih(a:)?’ + éh(x)4>

1 2 1
h(x)) A AP — ZFWFW

+q¢° <v+ﬂ

o term ~ A, A*: mass m124 = 2¢%0?

2 2
2,2 2 q
i A AR + 75 vh(z) A, A" + Eh(x)QA#A“

A A )

Ar AW 3 /q’2 h

ANASEAN - - - o
2

q21)2 A% ﬁqlvg/u/ A4 N \h



Massi

e Decomposing A" under spatial rotations (SO(3)): A* € 0 1.
@ 4 dof: -1 by Lorentz trafos -1 by gauge trafos: 2



Massive

e Decomposing A" under spatial rotations (SO(3)): A* € 0 1.
@ 4 dof: -1 by Lorentz trafos -1 by gauge trafos: 2

Degrees of freedom:

@ massless vector: 2, complex scalar: 2

@ massive vector: 3, one real scalar (Higgs boson): 1
@ gauge symmetry broken, but 9,A4* = 0 still holds:
o Dy AM ~ ket (k)
o for et(k) ~ kM: 9,A* ~ k* =m?% #0
o rest frame: k* = (m,,0,0,0): e#(k) = (1,0,0,0) eliminated
o 0 of A* eliminated: spin-0 part

@ Goldstone boson?




Massive

e Decomposing A" under spatial rotations (SO(3)): A* € 0 1.
@ 4 dof: -1 by Lorentz trafos -1 by gauge trafos: 2

Degrees of freedom:

@ massless vector: 2, complex scalar: 2

@ massive vector: 3, one real scalar (Higgs boson): 1
@ gauge symmetry broken, but 9,A4* = 0 still holds:
o Dy AM ~ ket (k)
o for et(k) ~ kM: 9,A* ~ k* =m?% #0
o rest frame: k* = (m,,0,0,0): e#(k) = (1,0,0,0) eliminated
o 0 of A* eliminated: spin-0 part

@ Goldstone boson? eaten by the gauge boson




e Decomposing A* under spatial rotations (SO(3)): A € 0D 1.
@ 4 dof: -1 by Lorentz trafos -1 by gauge trafos: 2

Degrees of freedom:

@ massless vector: 2, complex scalar: 2

@ massive vector: 3, one real scalar (Higgs boson): 1

@ gauge symmetry broken, but 9,A* = 0 still holds:

O A* ~ ket (k)

for et(k) ~ kH: 0, A" ~ k2 =m? #0

o rest frame: k* = (m,,0,0,0): e#(k) = (1,0,0,0) eliminated
o 0 of A* eliminated: spin-0 part

@ Goldstone boson? eaten by the gauge boson

Superconductivity

Realization of spontaneously broken U(1) in nature.
electric current: j = oF, o: conductivity, ¢ — co: superconductor




e Decomposing A* under spatial rotations (SO(3)): A € 0D 1.
@ 4 dof: -1 by Lorentz trafos -1 by gauge trafos: 2

Degrees of freedom:

@ massless vector: 2, complex scalar: 2

@ massive vector: 3, one real scalar (Higgs boson): 1

@ gauge symmetry broken, but 9,A* = 0 still holds:

O A* ~ ket (k)

for et(k) ~ kH: 0, A" ~ k2 =m? #0

o rest frame: k* = (m,,0,0,0): e#(k) = (1,0,0,0) eliminated
o 0 of A* eliminated: spin-0 part

@ Goldstone boson? eaten by the gauge boson

Superconductivity

No electric field inside: B= -V x BE=0 < B(t) = B(0)
if B(0) = 0, magnetic field cannot penetrate inside the supercond.




Massive

e Decomposing A* under spatial rotations (SO(3)): A* € 0 1.
@ 4 dof: -1 by Lorentz trafos -1 by gauge trafos: 2

Degrees of freedom:

@ massless vector: 2, complex scalar: 2

@ massive vector: 3, one real scalar (Higgs boson): 1
@ gauge symmetry broken, but 9, A" = 0 still holds:
o O AM ~ ket (k)
for eH(k) ~ kH: 0, A* ~ k2 =m? #0
o rest frame: k* = (m,,0,0,0): e#(k) =
o 0 of A* eliminated: spin-0 part

(1,0,0,0) eliminated

@ Goldstone boson? eaten by the gauge boson

Superconductivity

magnetic field drops exponentially: B(z) = B(0)e~*/!
realized by massive photons: m% = 2¢%v?, ¢ =2e l=my,'

v




e Decomposing A* under spatial rotations (SO(3)): A* € 0 1.
@ 4 dof: -1 by Lorentz trafos -1 by gauge trafos: 2

Degrees of freedom:

@ massless vector: 2, complex scalar: 2

@ massive vector: 3, one real scalar (Higgs boson): 1
@ gauge symmetry broken, but 9,A4* = 0 still holds:
O A* ~ ket (k)

for e#(k) ~ kH: 9, A" ~ k2 =m? #0
o rest frame: k* = (my,0,0,0): e#(k) =
o 0 of A* eliminated: spin-0 part

(1,0,0,0) eliminated

@ Goldstone boson? eaten by the gauge boson

v

Superconductivity

Interpretation: Higgs bosons — Cooper pairs, massive photons:
electric and magnetic fields described by massive KG / Proca eq.

v
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Discus

@ Writing down a mass term for the gauge field by hand
(%mQAANA“) does not respect gauge symmetry: forbidden!

@ Mass term by SSB: soft mass term.

@ Lagrangian is gauge invariant.

@ Symmetry breaking takes place at the level of the vacuum.

°

Theory (= Lagrangian) respects the symmetry, but the
ground state (= vacuum) does not!

@ high energies: E > v, v is small and can be neglected

UV properties of theory are the same as for unbroken
symmetry (v = 0)!



Discuss

@ Writing down a mass term for the gauge field by hand
(%mQAANA“) does not respect gauge symmetry: forbidden!

@ Mass term by SSB: soft mass term.

@ Lagrangian is gauge invariant.

@ Symmetry breaking takes place at the level of the vacuum.

°

Theory (= Lagrangian) respects the symmetry, but the
ground state (= vacuum) does not!

@ high energies: E > v, v is small and can be neglected

UV properties of theory are the same as for unbroken
symmetry (v = 0)!

Broken gauge symmetry by hand is not renormalizable.
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The Glashow-Weinberg-Salam Model (GYSI) S
A Theory of Leptons

for massles fermions (m = 0): 1#(31/} TZJR@’(/JR + YL,
where 7/}LR = PL RQ/) and PL = _75 P = %

Lepton Lagrangian (no nghthanded components for neutrinos!):

Ly = Z[R(?KR T Z‘ZLJEL a4 iDg@l/g.

@ internal symmetries?

@ join together particles with the same space time properties:

_ [ e _
=(2). rets

e Ly =iRPR + iLJIL




 Symmetry transformations ef the GO NI

Ly =iRJR + iLJL,
Ly invariant under
L — e~ iTa/2],
R — R,
SU(2) transformations.

@ connection weak isospin Iy and electric charge Q:
L.
3
@ gauging this SU(2): three massless gauge fields!

L:Q=1I) — R:Q=1I —1.
o further symmetry of Ly:
U(1): R — €*R

e what about L?: L — ¢"PL
o Wolfgang G Holik SRR
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R — e¥rPI2R
L — evB2p,

with the “weak hypercharge” yr r: Yi being generator of U(1).

(quasi-)Gell-Mann—Nishijima relation:

R has Yy =-2.
Symmetry of the Lagrangian:

SU2)L ® U(l)y

Covariant Derivative:

D, =0, —igT* A}, — ig'Yw B,




Electro
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Electrow

Lew = iRIPR + iLIPL — %GWGW — }ngyFW,
D, = 8, —igT* A}, — ig'Yw By,
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+
=(%);

with quantum numbers Iy = % and Yy = 1.



Electrow

Lew = iRDR +iLIPL — %GWGW — iFﬁyF‘l’“”,
D, =09, —igT" A}, — ig'Yw By,
G = 0,B, — 8,B,,,
Ff, = 0,A% — 0,A% + gf™ A} AL,
e, | — jEtEE

How to break SU(2), ® U(1)y 7
Introduce complex scalar isospinor (“the Higgs field"):

@=(1).

H H : ol 02 m’
due to SU(2) ® U(1)-invariant quartic potential: v* = — .



Due to SU(2) ® U(1) symmetry, we can choose

0
®(x) = < U+%h($) > ’

in the “unitary gauge”.
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Due to SU(2) ® U(1) symmetry, we can choose

0
®(z) = < U+%h(l‘) > ’

in the “unitary gauge”.

(Duqz‘))T DF¢ < quadratic terms for gauge fields:

Lo (943 — g'By) (9A** — ¢'B*) + ey 22 AF AT,

4 2
where the generators 7% = /2 were used and Yy = 1/2 set.
+ 1 (Al 42
A,u = TQ(AN‘ + ,LAN)'

mass terms for
o Zg ~ gAz — g,B;U"
+ o4+ 1 1 1 242
o Wi=As= ﬁ(Au +iA%).
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 Summary of EWSM

Weak mixing angle:
/

tan Oy = ’2,
g
sin? Oy = 0.2312.
Ag = cos by B, + sin HWAi photon,
Zg = —sinOw B, + cos OWAz Z-boson

Masses:

v

mz = ﬁ\/ g2+g/27
o (%
V2

mw 9,
mw

—— = cos by .
mz

Photon remains massless! Coupling: e = gsin 6y .



Masses

No tree-level mass allowed!

There is no way to combine left and righthanded fields in the SM
representations (!) in a gauge invariant way:

o lefthanded fermions: 2 of SU(2),
o righthanded fermions: 1 of SU(2),

Lumass ~ YV = g + Pri)r,

L:(W > R=1(g
lr

— LR= (ﬁg EL) LR

with

undefined in the sense of inner tensor product:
no SU(2)y, invariant Lagrangian
(open/uncontracted SU(2) index)

4
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@ Construct gauge invariant mass terms via Higgs mechanism

o tree-level fermion mass: ¢ mg
@ mass term carries SU(2),, quantum number! — 2.-21=1
e Higgs field is doublet of SU(2)y,

Yukawa couplings to leptons

EYukawa :YVZE'(I)R-F h. c.
¢+
—}[Z Vg EL <¢0>£R+ h. c.
SSB 0
EYukawa _YZ Uy EL ( v >€R+ h. c.
=Y,v llg + h. < my=0Yy
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What happens, if we add additional fermions to the SM?
“Families” : adding groups of fermions with the same quantum
numbers (spin, gauge charges, ...) but different masses

Flavour related to Yukawa sector

@ kinetic terms: flavour blind s
@ gauge interaction: flavour blind Ui Dy,

@ Yukawa interactions: responsible for masses,
couplings differ for each family Yi; Vi PVYR

Yukawa sector of the Standard Model

Fermion content: Qr;, uri, dri, L1i, LR

Ly = yzdeL,z’(I)dR,j + yé‘jQL,ii’uR,j + yijLi(I)ER,j + h. c.
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_ u
mi; =V Y5,

_ d

Masses: diagonalize mass matrices

Bi-unitary transformations: M — UDV': D =U'MV

Rotate fields in flavour space:
QLi — SZQL;,

UR,i — S;‘juR,j,

d
dri — SijdR ;-




Quark mass matrices

u u
mi; =V Y5,

d __ d

Masses: diagonalize mass matrices

Bi-unitary transformations: M — UDV': D =U'MV

Rotate fields in flavour space:
QLi — SZQL;,
UR,i — S;‘juR,j,

d
dri — SijdR ;-

LY = QL U/y”‘I)Sdek-l-QLz U,y”q)SkURkﬂL n. &
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How the fermion mixing enters the charged current

19 11/ )
Loo=—2WHI}?

@ Masses:
LY = QriST yh; ®Shdrk + QLS yl ;88 hurk + h. c.

o S? and S* fixed by m,, = S®'m,S* = diag(m,, m., m;)

@ Charged current:

Tt =ap Sy SRdri+ h. c.

CKM matrix (Cabibbo, Kobayashi, Maskawa)

o still have to diagonalize my: S9'm;S? — my = S®TVim,S?

T T Sy
Jr, = up A*Vijdy  + dp Viiytur
o Wolfgang G Holik SRR
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What abo
In the SM: no lepton mixing!

‘CY = yleL ZéERj TF h. c.

Rotate lepton doublet: Ly, ; — SiLjLL,j,
and singlet: {r; — Sfjﬁpb,j.

LY = LpiShiye @S brk + h. c.

charged current:
= _ oL«
Do lri — UgsSi v SiAL

ST unitary: SH1SE =1 — SL*S ik = = 0k

redefine lepton fields:

J“ VgLSL} Y Sk’ELk = 1/(76”7 ij
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How to generate lepton mixing?

@ No lepton mixing in the SM < righthanded neutrino fields.
@ Introduce them:

ﬁg/ = yij_/L,iq)eR,j T yfjl_lL,z“I)l/RJ + h.c

@ Masses and mixings similar to CKM mechanism.
@ “Problem”: neutrinos only have small masses
o My /Me =Yy /ye ~ 9.7 x 1078;
my/ms =y, /Yy, ~ 2.8 x 1071;
o Neutrino Yukawa couplings must be drastically smaller

@ rh neutrinos are SM singlets: may have Majorana mass

_ . 1
LSy =y5LLi®lr; + YL Pve; + §V£7Z‘OMZ'J'VR?]‘ + h.c




_ _ 1
‘C€f+M = yijLﬂ-(I)ER,j + yé/jLL,i(I)VR,j + §V£,iCMijVR,j + h.c



~PMNS Mixing

_ _ 1
Ly = Y5Lri®lry + y5LriPrrj + §V£,iCMiJ’VR»J' + h.c.

e Rotate: Lp;— SiLjLLm
¢
lri— SiilR;j,
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VRi — Sij VR,j

o Wolfgang G Holik SRR
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_ _ 1
Ly = Y5Lri®lry + y5LriPrrj + §V£,iCMiJ’VR»J' + h.c.
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_ _ 1
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e Rotate: Lp;— SiLjLLm
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_ _ 1
‘C€f+M = yl-ejLLJ(I)ER,j + yé/jLL,i(I)VR,j + §V£,iCMijVR,j + h.c

e Rotate: Lp;— SiLjLLm
lR; — SfjeRJ’
VRi — Szl'/jl/R,j

o y°¢ — Sliyege = y¢

e M — SYIMS¥

o y¥ — SLty¥S¥ arbitrary

Neutrino mass matrix:

Seesaw: m,, = —v2y?M~Ly*T

PMNS matrix (Pontecorvo, Maki, Nakagawa, Sakata)
— Lx7r* L —/
Jp = Vé,isz'j* L ik Y Slry = VZ,iU:,ij’YugLJ




Conclu

Spontaneous Symmetry Breaking: theory has some symmetry
which the ground state does not respect

@ Existence of some “order parameter” (which vanishes, if
symmetry is exact)

o Condensed matter physics: ferromagnetism, superfluidity,
superconductivity

Gauge boson masses forbidden by gauge invariance
“Higgs mechanism”: masses in a gauge invariant way
Electroweak Standard Model: SU(2)y, x U(1)y

Fermion masses via Yukawa interactions

Fermion mixing via Yukawa interactions



