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“Prehistory of the Higgs boson”

[P. Higgs: C. R. Physique 8 (2007) 970]

1928: Heisenberg (Ferromagnetism, nearest-neighbour interaction)

1947: Bogoliubov (Superfluidity, Bose condensation with short-range
repulsive two-body interaction)

1950: Ginzburg and Landau (Superconductivity, Bose condensation
of charged quasi-particles)

1957: Bardeen, Cooper and Schrieffer identified the Bosons of
Ginzburg–Landau (effective theory)

1960: Nambu (relativistic models, scalar condensate breaks
symmetry to generate masses for fermions)

1961: Goldstone (spinless zero-mass excitations)

1962: Goldstone, Salam and Weinberg (proved Goldstone’s theorem)

1963: Anderson (“Higgs mechanism” in superconductors)

1964: Higgs (local gauge invariance fails axioms of Goldstone: evade
Goldstone’s theorem in gauge theories)
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“Prehistory of the Higgs boson” (cont’d)

1964: Higgs (simples field-theoretic model (“Higgs model”),
relativistic version of Ginzburg–Landau) (rejected by PL!)

1964: Higgs 2nd version (+ general features of ssb gauge theories,
massive scalar excitations remaining: Higgs bosons) [1]

1964: Englert and Brout (QFT instead of classical FT by Higgs) [2]

1967: Weinberg (SSB of Glashow’s SU(2)×U(1))

1968: Salam (?) [in: Proceedings of the Eighth Nobel Symposium, p. 367]

1971: t’Hooft (completed Veltman’s renormalization programme)

1972: HEP Conference @ Fermilab (outbreak of theoretical activity)

1973: discovery of weak neutral currents

Anecdote besides: When Higgs met Nambu twenty years later, he
revealed that he had been the referee of [1] and [2].
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What does (spontaneous) symmetry breaking mean?

a parameter assumes a critical value

the symmetric configuration gets unstable

the ground state ist degenerate
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Degenerate vacua in quantum mechanics

Ferromagnet: rotational symmetric Hamiltonian

H = −J
∑
i,j

~Si · ~Sj

Ground state rotationally invariant: ~M = 〈~Si〉 = 0.

Below critical temperature: non-zero magnetization ~M 6= 0.

New vacuum has SO(2) instead of SO(3) rotational symmetry.

Degenerate vacua

Instead of a single vacuum state, now: family of vacua related
via rotations.

System chooses the particular vacuum itself: symmetry is
spontaneously broken by the choice of a vacuum.
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Symmetric potential, non-symmetric ground state

Global symmetry

L = ∂µφ
∗∂µφ− V (φ, φ∗)

impose global phase transformation: φ→ eiθφ (U(1) symmetry)

V (φ, φ∗) = V (|φ|) = m2φφ∗ + λ (φφ∗)2

Ground state: Minimizing the potential!

∂V

∂φ
= m2φ∗ + 2λφ∗ (φφ∗)

!
= 0

m2 > 0: φ∗ = 0 = φ

m2 < 0: local max φ = 0, minima:

|φ|2 = −m
2

2λ
= v2 ⇔ |〈0|φ|0〉|2 = v2

Wolfgang G. Hollik SSB & Higgs



Symmetric potential, non-symmetric ground state

Global symmetry

L = ∂µφ
∗∂µφ− V (φ, φ∗)

impose global phase transformation: φ→ eiθφ (U(1) symmetry)

V (φ, φ∗) = V (|φ|) = m2φφ∗ + λ (φφ∗)2

Ground state: Minimizing the potential!

∂V

∂φ
= m2φ∗ + 2λφ∗ (φφ∗)

!
= 0

m2 > 0: φ∗ = 0 = φ

m2 < 0: local max φ = 0, minima:

|φ|2 = −m
2

2λ
= v2 ⇔ |〈0|φ|0〉|2 = v2

Wolfgang G. Hollik SSB & Higgs



Symmetric potential, non-symmetric ground state

Global symmetry

L = ∂µφ
∗∂µφ− V (φ, φ∗)

impose global phase transformation: φ→ eiθφ (U(1) symmetry)

V (φ, φ∗) = V (|φ|) = m2φφ∗ + λ (φφ∗)2

Ground state: Minimizing the potential!

∂V

∂φ
= m2φ∗ + 2λφ∗ (φφ∗)

!
= 0

m2 > 0: φ∗ = 0 = φ

m2 < 0: local max φ = 0, minima:

|φ|2 = −m
2

2λ
= v2 ⇔ |〈0|φ|0〉|2 = v2

Wolfgang G. Hollik SSB & Higgs



Mexican hat

decomposing: φ = φ1 + iφ2

Minima of V along circle |φ| = v. If system chooses particular
direction, e.g. φ1 = v (meaning φ2 = 0), symmetry is
spontaneously broken.

Polar coordinates vs. real and imaginary parts

φ(x) = ρ(x)eiα(x) = φ1(x) + iφ2(x),

expanding around the vacuum: φ(x) = v + 1√
2

(h(x) + ig(x))
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Higgs and Goldstone particles

Plug the expansion φ(x) = v + 1√
2

(h(x) + ig(x)) into the

potential V (|φ|) = m2φφ∗ + λ (φφ∗)2:

L = const.+
1

2
∂µh∂

µh+
1

2
∂µg∂

µg − 1

2

(
−2m2

)︸ ︷︷ ︸
m2

h

h2 +WW.

h(x), g(x) real scalar fields

starting with one complex scalar φ(x) having mass m

m2 < 0 ↪→ m2
h > 0: h acquires mass mh =

√
−2m2

g is massless ↪→ Goldstone boson

a

aGoldstone particles may be fermions as well: e.g. Goldstinos of SUSY
breaking theories
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The Goldstone Theorem

Goldstone’s theorem

Spontaneous breaking of a (continuous) symmetry
↪→ massless particle: (Nambu-)Goldstone particle

Manifold of vacua

U(1) example: 1D vacuum

dimensionality of vacua-manifold:
# of generators that break the symmetry

zero vacuum energy: H|0〉 = 0

generator of symmetry trafo T a: [T a, H] = 0

H (T a|0〉) = T aH|0〉 = 0

if vacuum is not invariant under symmetry: T a|0〉 6= 0,
we have a new state with minimum energy, a new vacuum!
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A non-Abelian example

Goldstone’s theorem:

one Goldstone particle for each generator which breaks the
symmetry

quantum numbers of those Goldstones are the same as the
corresponding generators

Abelian example:

U(1) symmetry: φ in 2-dimensional representation

Wolfgang G. Hollik SSB & Higgs
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A non-Abelian example

Group of spatial rotations: SO(3)

φi in fundamental (isovector) representation: i = 1, 2, 3

L =
1

2
∂µφi∂

µφi −
m2

2
φiφi − λ (φiφi)

2 ,

G : φi →
(
e−iαkω

(k)
)
ij
φj = Uijφj .

Minimum of the potential with m2 < 0:

|φ0| =
√
φ21 + φ22 + φ23 =

(−m2

4λ

)1/2

= v

freedom to choose “physical” vacuum: ~φ0 = vê3
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Broken generators

Choosing vacuum as φ0 = vê3: not invariant under full group G,
but subgroup H ∈ G (rotations around 3-axis)

H : ~φ′0 = expiα3ω(3)~φ0 = ~φ0,

but nevertheless: potential V (φ) is invariant under G:

V (φ′) = V (φ)

How many Goldstone bosons?

φ3 acquires vev: φ3 = χ+ v, 〈φ1〉 = 0, 〈φ2〉 = 0, 〈χ〉 = 0.

quadratic term in the potential: only ∼ χ2

m2
χ = 8v2λ, mφ1 = mφ2 = 0.

one generator (ω(3)) left: H = SO(2) ∼= U(1)
↪→ one massive field

# of Goldstone particles: nG = dim(G/H) = dimG − dimH.
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Abelian gauge symmetries

up to now: global symmetries: φ→ eiqθφ
now: local (= gauge) symmetry: φ→ eiqθ(x)φ

U(1) gauge invariant Lagrangian:

L = (Dµφ)∗Dµφ− V (|φ|)− 1

4
FµνF

µν ,

gauge-covariant derivative: Dµφ = (∂µ + iqAµ)φ,
field strength tensor: Fµν = ∂µAν − ∂νAµ,

V (|φ|) = m2φ∗φ+ λ (φ∗φ)2 ,

minimum: v =
√
−m2

2λ ↪→ φ(x) =
(
v + 1√

2
h(x)

)
eiα(x)

a

Dµφ =
1√
2
∂µh(x) + iq(v +

1√
2
h(x))Aµ.

aphase α(x) can be removed by gauge transformation
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Higgs mechanism: massive gauge bosons

Rewriting the Lagrangian:

L =
1

2
∂µh(x)∂µh(x)− 1

2
2λv2︸︷︷︸
m2

h

h(x)2 − λ
(
v√
2
h(x)3 +

1

8
h(x)4

)

+ q2
(
v +

1√
2
h(x)

)2

AµA
µ − 1

4
FµνF

µν

term ∼ AµAµ: mass m2
A = 2q2v2

q2v2AµA
µ +

2√
2
q2vh(x)AµA

µ +
q2

2
h(x)2AµA

µ

q2v2

Aµ Aµ

Aµ

Aν

h

2√
2
q2vgµν

Aµ

Aν

h

h

q2

2 gµν
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Massive Photons and Superconductivity

Decomposing Aµ under spatial rotations (SO(3)): Aµ ∈ 0⊕1.

4 dof: -1 by Lorentz trafos -1 by gauge trafos: 2

Degrees of freedom:

massless vector: 2, complex scalar: 2

massive vector: 3, one real scalar (Higgs boson): 1

gauge symmetry broken, but ∂µA
µ = 0 still holds:

∂µA
µ ∼ kµεµ(k)

for εµ(k) ∼ kµ: ∂µA
µ ∼ k2 = m2

A 6= 0
rest frame: kµ = (ma, 0, 0, 0): εµ(k) = (1, 0, 0, 0) eliminated
0 of Aµ eliminated: spin-0 part

Goldstone boson? eaten by the gauge boson

Superconductivity

Wolfgang G. Hollik SSB & Higgs



Massive Photons and Superconductivity

Decomposing Aµ under spatial rotations (SO(3)): Aµ ∈ 0⊕1.

4 dof: -1 by Lorentz trafos -1 by gauge trafos: 2

Degrees of freedom:

massless vector: 2, complex scalar: 2

massive vector: 3, one real scalar (Higgs boson): 1

gauge symmetry broken, but ∂µA
µ = 0 still holds:

∂µA
µ ∼ kµεµ(k)

for εµ(k) ∼ kµ: ∂µA
µ ∼ k2 = m2

A 6= 0
rest frame: kµ = (ma, 0, 0, 0): εµ(k) = (1, 0, 0, 0) eliminated
0 of Aµ eliminated: spin-0 part

Goldstone boson?

eaten by the gauge boson

Superconductivity

Wolfgang G. Hollik SSB & Higgs



Massive Photons and Superconductivity

Decomposing Aµ under spatial rotations (SO(3)): Aµ ∈ 0⊕1.

4 dof: -1 by Lorentz trafos -1 by gauge trafos: 2

Degrees of freedom:

massless vector: 2, complex scalar: 2

massive vector: 3, one real scalar (Higgs boson): 1

gauge symmetry broken, but ∂µA
µ = 0 still holds:

∂µA
µ ∼ kµεµ(k)

for εµ(k) ∼ kµ: ∂µA
µ ∼ k2 = m2

A 6= 0
rest frame: kµ = (ma, 0, 0, 0): εµ(k) = (1, 0, 0, 0) eliminated
0 of Aµ eliminated: spin-0 part

Goldstone boson? eaten by the gauge boson

Superconductivity

Wolfgang G. Hollik SSB & Higgs



Massive Photons and Superconductivity

Decomposing Aµ under spatial rotations (SO(3)): Aµ ∈ 0⊕1.
4 dof: -1 by Lorentz trafos -1 by gauge trafos: 2

Degrees of freedom:

massless vector: 2, complex scalar: 2

massive vector: 3, one real scalar (Higgs boson): 1

gauge symmetry broken, but ∂µA
µ = 0 still holds:

∂µA
µ ∼ kµεµ(k)

for εµ(k) ∼ kµ: ∂µA
µ ∼ k2 = m2

A 6= 0
rest frame: kµ = (ma, 0, 0, 0): εµ(k) = (1, 0, 0, 0) eliminated
0 of Aµ eliminated: spin-0 part

Goldstone boson? eaten by the gauge boson

Superconductivity

Realization of spontaneously broken U(1) in nature.
electric current: ~j = σ ~E, σ: conductivity, σ →∞: superconductor
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Massive Photons and Superconductivity

Decomposing Aµ under spatial rotations (SO(3)): Aµ ∈ 0⊕1.
4 dof: -1 by Lorentz trafos -1 by gauge trafos: 2

Degrees of freedom:

massless vector: 2, complex scalar: 2

massive vector: 3, one real scalar (Higgs boson): 1

gauge symmetry broken, but ∂µA
µ = 0 still holds:

∂µA
µ ∼ kµεµ(k)

for εµ(k) ∼ kµ: ∂µA
µ ∼ k2 = m2

A 6= 0
rest frame: kµ = (ma, 0, 0, 0): εµ(k) = (1, 0, 0, 0) eliminated
0 of Aµ eliminated: spin-0 part

Goldstone boson? eaten by the gauge boson

Superconductivity

No electric field inside: ~̇B = −~∇× ~E = 0 ↔ ~B(t) = ~B(0)
if ~B(0) = 0, magnetic field cannot penetrate inside the supercond.
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Massive Photons and Superconductivity

Decomposing Aµ under spatial rotations (SO(3)): Aµ ∈ 0⊕1.

4 dof: -1 by Lorentz trafos -1 by gauge trafos: 2

Degrees of freedom:

massless vector: 2, complex scalar: 2

massive vector: 3, one real scalar (Higgs boson): 1

gauge symmetry broken, but ∂µA
µ = 0 still holds:

∂µA
µ ∼ kµεµ(k)

for εµ(k) ∼ kµ: ∂µA
µ ∼ k2 = m2

A 6= 0
rest frame: kµ = (ma, 0, 0, 0): εµ(k) = (1, 0, 0, 0) eliminated
0 of Aµ eliminated: spin-0 part

Goldstone boson? eaten by the gauge boson

Superconductivity

magnetic field drops exponentially: B(x) = B(0)e−x/l

realized by massive photons: m2
A = 2q2v2, q = 2e l = m−1A
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Massive Photons and Superconductivity

Decomposing Aµ under spatial rotations (SO(3)): Aµ ∈ 0⊕1.

4 dof: -1 by Lorentz trafos -1 by gauge trafos: 2

Degrees of freedom:

massless vector: 2, complex scalar: 2

massive vector: 3, one real scalar (Higgs boson): 1

gauge symmetry broken, but ∂µA
µ = 0 still holds:

∂µA
µ ∼ kµεµ(k)

for εµ(k) ∼ kµ: ∂µA
µ ∼ k2 = m2

A 6= 0
rest frame: kµ = (ma, 0, 0, 0): εµ(k) = (1, 0, 0, 0) eliminated
0 of Aµ eliminated: spin-0 part

Goldstone boson? eaten by the gauge boson

Superconductivity

Interpretation: Higgs bosons → Cooper pairs, massive photons:
electric and magnetic fields described by massive KG / Proca eq.
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Discussion

Writing down a mass term for the gauge field by hand
(12m

2
AAµA

µ) does not respect gauge symmetry: forbidden!

Mass term by SSB: soft mass term.

Lagrangian is gauge invariant.

Symmetry breaking takes place at the level of the vacuum.

Theory (= Lagrangian) respects the symmetry, but the
ground state (= vacuum) does not!

@ high energies: E � v, v is small and can be neglected

UV properties of theory are the same as for unbroken
symmetry (v = 0)!

Broken gauge symmetry by hand is not renormalizable.
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The Glashow-Weinberg-Salam Model (GWSM)

A Theory of Leptons

L = iψ̄ /∂ψ −mψ̄,
for massles fermions (m = 0): ψ̄ /∂ψ = ψ̄R /∂ψR + ψ̄L/∂ψL,
where ψL,R = PL,Rψ and PL = 1−γ5

2 , PR = 1+γ5
2 .

Lepton Lagrangian (no righthanded components for neutrinos!):

L` = i¯̀R /∂`R + i¯̀L/∂`L + iν̄`/∂ν`.

internal symmetries?

join together particles with the same space time properties:

L =

(
ν`
`L

)
, R = `R

L` = iR̄/∂R+ iL̄/∂L

Wolfgang G. Hollik SSB & Higgs
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Symmetry transformations of the GWSM

L` = iR̄/∂R+ iL̄/∂L,

L` invariant under

L→ e−i~τ ·~α/2L,

R→ R,

SU(2) transformations.

connection weak isospin IW and electric charge Q:

L : Q = I3W −
1

2
; R : Q = I3W − 1.

gauging this SU(2): three massless gauge fields!

further symmetry of L`:

U(1) : R→ eiβR

what about L?: L→ eiqβL
Wolfgang G. Hollik SSB & Higgs



Weak Hypercharge

R→ eiyRβ/2R

L→ eiyLβ/2L,

with the “weak hypercharge” yL,R: YW being generator of U(1).

(quasi-)Gell-Mann–Nishijima relation:

Q = T 3
W +

YW
2

L has YW = −1,

R has YW = −2.

Symmetry of the Lagrangian:

SU(2)L ⊗U(1)Y

Covariant Derivative:

Dµ = ∂µ − igT aAaµ − ig′YWBµ
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Electroweak Symmetry Breaking (EWSB)

Lagrangian of the Electroweak Standard Model:

LEW = iR̄ /DR+ iL̄ /DL− 1

4
GµνG

µν − 1

4
F aµνF

a,µν ,

Dµ = ∂µ − igT aAaµ − ig′YWBµ,
Gµν = ∂µBν − ∂νBµ,
F aµν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν ,

[T a, T b] = fabcT c.

How to break SU(2)L ⊗U(1)Y ?
Introduce complex scalar isospinor (“the Higgs field”):

Φ =

(
φ+

φ0

)
,

with quantum numbers IW = 1
2 and YW = 1.
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Electroweak Symmetry Breaking (EWSB)

Lagrangian of the Electroweak Standard Model:

LEW = iR̄ /DR+ iL̄ /DL− 1

4
GµνG

µν − 1

4
F aµνF

a,µν ,

Dµ = ∂µ − igT aAaµ − ig′YWBµ,
Gµν = ∂µBν − ∂νBµ,
F aµν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν ,

[T a, T b] = fabcT c.

How to break SU(2)L ⊗U(1)Y ?
Introduce complex scalar isospinor (“the Higgs field”):

〈Φ〉 =

(
0
v

)
,

due to SU(2)⊗U(1)-invariant quartic potential: v2 = −m2

2λ .
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Electroweak Gauge Bosons

Due to SU(2)⊗U(1) symmetry, we can choose

Φ(x) =

(
0

v + 1√
2
h(x)

)
,

in the “unitary gauge”.

(Dµφ)†Dµφ ↪→ quadratic terms for gauge fields:

1

4
v2
(
gA3

µ − g′Bµ
) (
gA3µ − g′Bµ

)
+

1

2
g2v2A+

µA
−µ,

where the generators T a = σa/2 were used and YW = 1/2 set.
A±µ = 1√

2
(A1

µ ± iA2
µ).

mass terms for

Z0
µ ∼ gA3

µ − g′Bµ,

W±µ = A±µ = 1√
2
(A1

µ ± iA2
µ).
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Summary of EWSM

Weak mixing angle:

tan θW =
g′

g
,

sin2 θW = 0.2312.

A0
µ = cos θWBµ + sin θWA

3
µ photon,

Z0
µ = − sin θWBµ + cos θWA

3
µ Z-boson

Masses:

mZ =
v√
2

√
g2 + g′2,

mW =
v√
2
g,

mW

mZ
= cos θW .

Photon remains massless! Coupling: e = g sin θW .
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Masses for Fermions

No tree-level mass allowed!

There is no way to combine left and righthanded fields in the SM
representations (!) in a gauge invariant way:

lefthanded fermions: 2 of SU(2)L

righthanded fermions: 1 of SU(2)L

Lmass ∼ Ψ̄Ψ = ψ̄LψR + ψ̄RψL,

with

L =

(
ν`
`L

)
, R = `R

↪→ L̄R =
(
ν̄` ¯̀

L

)
· `R

undefined in the sense of inner tensor product:
no SU(2)L invariant Lagrangian

(open/uncontracted SU(2) index)

Wolfgang G. Hollik SSB & Higgs



Yukawa Interactions!

Way out:

Construct gauge invariant mass terms via Higgs mechanism

tree-level fermion mass: ψ̄LmψR
mass term carries SU(2)L quantum number! ↪→ 2̄ · 2 1 = 1

Higgs field is doublet of SU(2)L

Yukawa couplings to leptons

LYukawa = Y`L̄ · Φ R+ h. c.

= Y`
(
ν̄` ¯̀

L

)
·
(
φ+

φ0

)
`R + h. c.

LSSBYukawa = Y`
(
ν̄` ¯̀

L

)
·
(

0
v

)
`R + h. c.

= Y` v ¯̀
L`R + h. c. ↪→ m` = v Y`
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How the Flavour Comes into the Game. . .

What happens, if we add additional fermions to the SM?
“Families”: adding groups of fermions with the same quantum
numbers (spin, gauge charges, . . . ) but different masses

Flavour related to Yukawa sector

kinetic terms: flavour blind ψ̄i/∂ψi

gauge interaction: flavour blind ψ̄i /Dψi

Yukawa interactions: responsible for masses,
couplings differ for each family yijψ̄L,iΦψR,j

Yukawa sector of the Standard Model

Fermion content: QL,i, uR,i, dR,i, LL,i, `R,i

LY = ydijQ̄L,iΦdR,j + yuijQ̄L,iΦ̃uR,j + yeijL̄L,iΦ`R,j + h. c.
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Quark Mixing

Quark mass matrices

mu
ij = v yuij ,

md
ij = v ydij .

Masses: diagonalize mass matrices

Bi-unitary transformations: M → UDV †: D = U †MV

Rotate fields in flavour space:

QL,i → SQijQL,j ,

uR,i → SuijuR,j ,

dR,i → SdijdR,j .

LqY = Q̄L,iS
Q∗
ij′ y

d
j′jΦS

d
jkdR,k + Q̄L,iS

Q∗
ij′ y

u
j′jΦ̃S

u
jkuR,k + h. c.
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Charged Current and CKM matrix

How the fermion mixing enters the charged current
LCC = − ig√

2
W+
µ J

µ
L ?

Masses:

LqY = Q̄L,iS
Q∗
ij′ y

d
j′jΦS

d
jkdR,k + Q̄L,iS

Q∗
ij′ y

u
j′jΦ̃S

u
jkuR,k + h. c.

SQ and Su fixed by m̃u = SQ†muS
u = diag(mu,mc,mt)

Charged current:

JµL = ūL,iγ
µdL,i + h. c.

CKM matrix (Cabibbo, Kobayashi, Maskawa)

still have to diagonalize md: SQ†mdS
d → m̃d = SQ†V†mdS

d

JµL = ūL,iS
Q∗
ij γ

µVjj′S
Q
j′idL,i + h. c.
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still have to diagonalize md: SQ†mdS
d → m̃d = SQ†V†mdS

d

JµL = ūL,iS
Q∗
ij γ

µVjj′S
Q
j′idL,i + h. c.
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Charged Current and CKM matrix

How the fermion mixing enters the charged current
LCC = − ig√

2
W+
µ J

µ
L ?

Masses:

LqY = Q̄L,iS
Q∗
ij′ y

d
j′jΦS

d
jkdR,k + Q̄L,iS

Q∗
ij′ y

u
j′jΦ̃S

u
jkuR,k + h. c.

SQ and Su fixed by m̃u = SQ†muS
u = diag(mu,mc,mt)

Charged current:

JµL = ūL,iS
Q∗
ij γ

µSQjidL,i + h. c.

CKM matrix (Cabibbo, Kobayashi, Maskawa)

still have to diagonalize md: SQ†mdS
d → m̃d = SQ†V†mdS

d

JµL = ū′L,iγ
µVijd

′
L,j + d̄′L,iV

†
ijγ

µu′L,j
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What about Leptons?

In the SM: no lepton mixing!

L`Y = yeijL̄L,iΦ`R,j + h. c.

Rotate lepton doublet: LL,i → SLijLL,j ,

and singlet: `R,i → S`ij`R,j .

L`Y = L̄L,iS
L∗
ij′ y

e
j′jΦS

`
jk`R,k + h. c.

charged current:

ν̄`,iγ
µ`L,i → ν̄`,iS

L∗
ij γ

µSLjk`L,k

SL unitary: SL†SL = 1 ↪→ SL∗ij S
L
jk = δik

redefine lepton fields:

JµL = ν̄`,iS
L∗
ij γ

µSLjk`L,k = ν̄ ′`,iδijγ
µ`L,j
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Righthanded Neutrinos

How to generate lepton mixing?

No lepton mixing in the SM ⇔ righthanded neutrino fields.

Introduce them:

L`Y = yeijL̄L,iΦ`R,j + yνijL̄L,iΦνR,j + h. c.

Masses and mixings similar to CKM mechanism.

“Problem”: neutrinos only have small masses

mν/me = yν/ye ≈ 9.7× 10−8;
mν/mτ = yν/yτ ≈ 2.8× 10−11;
Neutrino Yukawa couplings must be drastically smaller

The Way out:

rh neutrinos are SM singlets: may have Majorana mass

L`Y+M = yeijL̄L,iΦ`R,j + yνijL̄L,iΦνR,j +
1

2
νTR,iCMijνR,j + h. c.
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PMNS Mixing

L`Y+M = yeijL̄L,iΦ`R,j + yνijL̄L,iΦνR,j +
1

2
νTR,iCMijνR,j + h. c.

Rotate: LL,i → SLijLL,j ,

`R,i → S`ij`R,j ,

νR,i → SνijνR,j

ye → SL†yeSe = ỹe

M→ Sν†MSν

yν → SL†yνSν arbitrary

Neutrino mass matrix:

Seesaw: mν = −v2yνM−1yνT ↪→ m̃ν = UT
νmνUν

PMNS matrix (Pontecorvo, Maki, Nakagawa, Sakata)

JµL = ν̄`,iS
L∗
ij U

∗
ν,jkγ

µSLkl`L,l = ν̄ ′`,iU
∗
ν,ijγ

µ`L,j
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Conclusion

Spontaneous Symmetry Breaking: theory has some symmetry
which the ground state does not respect

Existence of some “order parameter” (which vanishes, if
symmetry is exact)

Condensed matter physics: ferromagnetism, superfluidity,
superconductivity

Gauge boson masses forbidden by gauge invariance

“Higgs mechanism”: masses in a gauge invariant way

Electroweak Standard Model: SU(2)L ×U(1)Y

Fermion masses via Yukawa interactions

Fermion mixing via Yukawa interactions

Wolfgang G. Hollik SSB & Higgs


